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Chapter 1: The elements in SCIA Engineer

Introduction

As an introduction. some basic rules for good use of fem software are given:

« Do not start too complex. It is better to draw up a coarse model first and to refine it afterwards. From the
coarse model many primary conclusions can be already drawn to simplify the rest of the course of the
modelling.

« In many cases the Finite Element mesh is too coarse in a specific detail area to obtain exact results.
Instead of trying to refine the mesh in such an area, it is mostly advisable to draw up a sub model of the
detail.

« Drawing up a sub model is based on the Saint-Venant principle that indicates that if the real force
distribution is replaced by a static equivalent system, the stress distribution is only influenced in the
direct environment of the point of application of the forces. More specific: this means that if the edges of
the sub model are removed far enough from the stress concentrations that you want to examine, the
sub model gives reliable results.

« Restrict the structure type to the necessary. It is not always necessary to model a 3D structure. A 2D
environment can provide just as good results in a quicker and simpler way. Especially the restriction of
the number of degrees of freedom can lead to fewer problems with the calculation.

« If possible, use symmetry to restrict the calculation model in size.

< Always apply/test new functionalities or special techniques to a small project and apply it only
afterwards on the real complex project.

< Always calculate the structure after modelling, loaded with the self-weight. The other loads can only be
imported when no problems are encountered.

« Always consider the compliances of the complete construction when having an instability/singularity. If
the degrees of freedom are obstructed for the entire structure according to the construction type, only
then have a look at the members.

« After calculation:
o check if Z(loads) equals Z(reactions);
0 check the reaction forces;
o check if the moment diagram progresses as expected;
o check if the structure is deformed as expected.

« If possible, always perform a short manual calculation to verify or estimate the order of magnitude of the
results.

TC —2023/09/11 5






Chapter 1: The elements in SCIA Engineer

Chapter 1: The elements in SCIA Engineer

1.1. Type of Element — Solver

The solver of SCIA Engineer uses the same element for plates as for the bending behaviour of shell
members. Analogously, the same element is used for walls and for their functioning, namely the wall inner
forces.

In a General XYZ environment there are 6 degrees of freedom for each node. Physically, these 6 degrees of
freedom represent the following: the displacements u, v, w and the rotations ¢x, ¢y, ¢.. The components of
displacement are given in the local axis of the element. So u, v and ¢ represent the plane stress/strain state.
w, ¢x and ¢y indicate bending/shear force.

The element used in SCIA Engineer for the calculation of membrane forces includes a 3-nodes triangle and
a 4-nodes quadrilateral with 3 degrees of freedom per node.

[us, vs, 3]

[U3, V3, ¢3] [U4, Va4, ¢4] /:\
A i

[uz, v, §1] [uz, v2, 2] [uz, v, §1] [uz, v2, 2]

Regarding the application of these elements, the following advantages can be given:
e The structure is calculated more accurately.
« The 2D elements can be connected to the 1D elements in the nodes thanks to their rotational degree of
freedom.

For more information see ref. [5].
A detailed description of the element used for bending/shear force is given in ref. [7].

Because of the following properties of the solver in SCIA Engineer, an optimal result is obtained for the finite
elements calculation (ref. [6]):
« Implementation of the algorithm for interpolation on edges.
This provides an accurate approach of the shear stresses on an edge.

e Great precision concerning the calculation of internal forces in ribs.

« Use of the model for line supports on 2D member edges: this method introduces a good representation
of the intensity with the guarantee of continuity of the stresses on the intersections of crossing line
supports.

< By optimizing of the algorithms and by rewriting some parts of the code with respect to earlier versions
(before version 5.0), there is a gain of speed of approximately 15%.

For the bending behaviour there are 2 types of elements implemented:
e The Mindlin element including shear force deformation
* The Kirchhoff element without shear force deformation

The difference between a Kirchhoff and a Mindlin calculation will be discussed in Chapter 2:

TC —2023/09/11 7
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B | Solver setup X

Name SolverSetupl
Specify load cases for linear calculation
Specify combinations for linear stability calculation
Specify combinations for nonlinear stability calculation
4 Advanced solver settings
4 General
Neglect shear force deformation ( Ay, Az>>A)
Neglect shear center eccentricity
Bending theory of plate/shell analysis Mindlin v
Type of solver Direct v
Minimal number of sections on member 10
Warning when maximal translation is greater than [mm] 1000.0
Warning when maximal rotation is greater than [mrad] 100.0

Coefficient for reinforcement 1

B m® & 0K Cancel

1.2. Local axis of a 2D element

Each 2D finite element has a local axis. The results (internal forces. stresses) are represented according to
these axes and the loads can be introduced according to them.

The local coordinate system can be drawn on each element:
Set view parameters for all > Structure > Local axe s > Members 2D

For projects with Plate XY and Wall XY, the local axis is identical to the global axis.
The following explanation relates to General XYZ projects.

The local coordinate system is a right-handed Cartesian coordinate system. The origin of the axis lies in the
starting point | of the 2D mesh element. The results are independent of the choice of starting point I. The
generator of the finite element mesh defines the begin node of each mesh element automatically.

The z-axis is perpendicular to the plane of the 2D mesh element and the orientation is defined as follows:

When an observer looks in the direction (resp. in opposite direction) of the z-axis, the description of the
nodes I, J, K, L of a mesh element is clockwise (resp. counter clockwise).

The direction of rotation of a 2D finite element corresponds to that of the 2D member to which the finite
element belongs. The direction of rotation of a 2D member depends on the direction in which the nodes are
established while introducing the geometry.

You can modify the direction of the local z-axis after input of the geometry. This can be useful to simplify the
input of the loads. Select the 2D member and check the option LCS Z axis Swap orientation. Pay attention
to the local axes of the mesh elements, that they will not rotate with this option.

The local x- and y-axes are located in the reference plane of the 2D mesh element (the middle plane) and
since the coordinate system is always orthogonal, it is sufficient to define the local x-axis:

The local x-axis is the intersection curve of a horizontal surface through the origin of the global axis and the
surface of the 2D mesh element. Its positive orientation is defined in such a way that the angle between the
+x and +X-axis is acute.

There are two cases for which above-mentioned definition is inadequate:
1. If the local x-axis is perpendicular to the X-axis, the criterion of the acute angle is not valid anymore.
2. When the element plane and the XY surface are parallel, a cross-section cannot be defined.

The rule for the definition of the local x-axis in case of these exceptions is as follows:

1. The orientation of the local +x-axis corresponds to the orientation of the +Y-axis. This criterion replaces
the criterion of the acute angle.
2. The +x and +X axes are identical.

8 TC —2023/09/11



Chapter 1: The elements in SCIA Engineer

Example: 01_01_Axis.esa

In this example, a sloping plate is introduced as a shell element to indicate the position of the local axis
according to the above-mentioned rules.

The numeration of the nodes is given clockwise when you look in the direction of the local z-axis.

The intersection line of a horizontal plane through the origin with the plane of the 2D member represents a
straight line according to line K1 and K2. This means that the local x-axis is perpendicular to the global X-
axis so the criterion of the acute angle is not valid. As a result, the orientation of the local +x-axis
corresponds to the orientation of the +Y-axis.

Since version SCIA Engineer 2011 you have the possibility to set the direction of the local system axis in
following ways:

0. x(y) automatic (same as in SCIA Engineer 2010.1)

1. x(y) parallel to a given plane

2. x(y) concurrent with a given line.

It leads from the center of the element to the cross of the element plane and the line.

3. x(y) as a tilt of a vector defined by a vector.

Itis a vector, lying in the element plane, which has the smallest angle with the given vector)

4. x(y) as a tilt of a vector defined by a given point.

It is a vector, oriented from the element center to the given point, will be tilted to the element plane.

5. x(y) as a tilt of a vector defined by a given line.

It is a vector, starting at the element center and perpendicular to the given line will be tilted to the

element plane.

You can interact and swap the local z direction on all 6 methods.

Points and vectors required to define the new types of local system axis are set by the user in the properties
of the 2D member.

« The local system of the type 1 and 3 is defined by one vector.

* The local system of type 4 is defined by one point.

* The local system of the type 2 and 5 is defined by two points.

TC —2023/09/11 9
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Example: 01_02_User defined LCS.esa

In this example the use of a user defined LCS with local x-axis pointing to a given point is illustrated.
There are two cones. The cone at the left has standard definition of local axis. On the other cone, the LCS is
defined by a tilt of a vector defined by the top of the cone.

>

2D MEMBER (1)

Name S2
Layer Layerl v
Elementtype Standard

Element behaviour  Standard FEM

<lel<|ttl

Type shell (98)
Shape Curved
Material  $235 v
FEMmodel Isotropic

FEM nonlinear model none

<l

Thickness type ~ constant
Thickness Th. [mm] 200

<

Member system-plane at ~ Centre
Eccentricityz[mm] 0
LCStype  Tilt of vector defined b ...
Localaxis  x by point
x1[m] 20.000
yl[m] 0.000
z1[m] 5.000
Swap orientation OD
LCSangle [deg]  0.00
v NODES

Standard method tilt of vector defined by point N oo

N6 abso

il

N7 abso

W 3
iy, N8 abso
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Chapter 2: Mesh Generation

2.1. Mesh Settings

Under Tools > Calculation & Mesh > Mesh settings  the size of the mesh elements and the general setup
of the mesh generator can be changed. The mesh settings here will be applied on the entire project, unless
local mesh refinements are applied.

The local mesh refinements can be added in the input panel under Calculation & Results and in category
Local mesh refinement. These refinements can be introduced on a specific node. 2D member edge or on a
surface. That way for example, a coarse distribution can be adopted on the global structure and a more
refined mesh for a specific 2D element.

General setup with Tools > Calculation & Mesh > Mesh settings:

B | Mesh setup X

Name MeshSetupl
Average number of 1D mesh elements on straight 1D members 1
Average size of 1D mesh element on curved 1D members [m] 2.000
Average size of 2D mesh element [m] 2.000
Connect members/nodes
4 Advanced mesh settings
4 General mesh settings
Minimal distance between definition point and line [m] 0.001
Definition of mesh elementsize for panels Automatic Y
Average size of panel element [m] 1.000
Elastic mesh
4 1D elements
Minimal length of beam element [m] 0.100
Maximal length of beam element [m] 100.000
Average size of tendons, elements on subsoil, nonlinear soil spring [m] 1.000
Generation of nodes in connections of beam elements
Generation of variable eccentricities on members instead of constant ones
Division on haunches and arbitrary members 5
Division for integration strip and 2D-1D upgrade 50
Mesh refinement following the beam type None v
4 2D elements
Maximal out of plane angle of a quadrilateral [mrad] 30.0
Predefined mesh ratio 1.5
Shape of mesh elements Quadranglesand v

B} gz g{ _ OK ICancel M

Average number of tiles of 1D element
If necessary, more than one finite element may be generated on a single beam.
The value here specifies how many finite elements should be created on the beam.

The value is taken into account only if the original 1D member is longer than adjusted minimal length of
beam element and shorter than adjusted maximal length of beam element

Average size of 1D mesh element on curved 1D member s [m]
The average size of 1D mesh element on curved 1D members not connected to 2D members.

Average size of 2D element/curved element [m]
The average size of an edge of a 2D element. This size may be changing when refining the mesh in
specified points.

Connect members/nodes
Possibility to automatically connect 1D and 2D members before calculation. As default for new projects it is
ON, for old projects it is OFF.

TC - 2023/09/11 11
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General mesh settings

Minimal distance between two points [m]
If the distance between two mesh nodes is less than the value specified here, then these two points are
automatically merged into one single point. This option applies for both 1D and 2D elements.

Definition of mesh element size for panels
If the mesh size for load panels is set to Automatic, then SCIA Engineer will use a mesh size of 1 meter. If
this value is set to Manual, then you can specify the average mesh size in the next field.

Average size of panel elements [m]
Defines the average size of mesh elements for load panels (when the definition is set to manual).

Elastic mesh
If ON mesh on 2D members is generated much variable than in previous versions. It also allows to use
automatic mesh refinement functionality.

Use automatic mesh refinement
If ON mesh on 2D members can be refined automatically in places where is necessary for better results.

1D Elements

Minimal length of beam element [m]
A 1D element cannot become shorter than this value. This value supersedes the parameter above (Average
number of tiles of 1D element)

Maximal length of beam element [m]
A 1D element cannot become longer that this value. If a beam of the structure is longer than this value, then
this beam will be divided into multiple mesh elements to satisfy the condition of maximal length.

Average size of cables. tendons. elements on subsoi  |. nonlinear soil springs
To obtain precise results, it is necessary to generate a sufficient dense element mesh on cables, tendons
(prestressed concrete), 1D elements on subsoil and when using nonlinear soil springs on 1D elements.

Generation of nodes in connections of beam elements
If this option is ON, a check for "touching" beams/FE node and FE node/FE node is performed.
This means:
« if a FE node of one beam "touches" another beam in a point where there is no node, then the two
beams are connected by a FE node.
» If an FE node of one beam coincides with an FE node of another beam, then these 2 FE nodes become
1 FE nodes, thus connecting both beams
If the option is OFF, such a situation remains unsolved and the beams are not connected to each other.
The function has the same effect as performing the function Check of data .

Be aware: when you mesh 2 wind bracings with an even number of tiles, then they will automatically connect
because they will have a common FE node. It is always recommended to use an odd number of tiles when
meshing 1D members.

Generation of eccentric elements on members with va  riable height

If a beam is of variable height, the generator automatically generates eccentric finite elements along the
haunch.

Moreover, if this option is ON. the eccentricity of the elements may vary along the element, i.e. the start-node
of the element may have different eccentricity than the end-node of the element.

If this option is off, the eccentricity along individual finite elements is constant and the eccentricity changes in
steps in nodes along the haunch.

Division on haunches and arbitrary members
This specifies the number of mesh elements generated on a haunch. This option prescribes the precision of
the modelling. The larger the number, the better the model approaches the reality.

Division for 2D-1D upgrade
This specifies the number of mesh elements generated on the (resulting) 1D member when doing a 2D-1D
upgrade.

12 TC —2023/09/11



Chapter 2: Mesh Generation

Mesh refinement following the beam type

This specifies if the nodal mesh refinements should also be applied to beam members.

The nodal mesh refinement is represented by a volumetric sphere. As a consequent, the mesh of all the
structure elements situated in this sphere will be refined taking the following possibilities into account:
None

The refinement is not applied to 1D members (so. it will only be applied to 2D members).

Beams and Columns

The refinement is applied only to 1D members with Type set to ‘Beam (80)’ or ‘Column (100)'.

All members

The refinement is applied to all 1D members

2D elements

Maximal out of plane angle of a quadrilateral eleme  nt

This value determines whether a spatial quadrilateral element whose nodes are not in one plane will be
replaced by two triangular elements. This parameter is only meaningful for out-of-plane surfaces — shells.
The assessed angle is measured between the plane made by the first three nodes of the quadrilateral and
the remaining node of this quadrilateral.

Predefined mesh ratio

Defines the relative distance between the predefined mesh formed by regular quadrilateral elements and the
nearest edge. The edge may consist of an internal edge, external edge or border of refined area. The final
distance is calculated as a multiple of the defined ratio and adjusted average element size for 2D elements.

Shape of mesh elements

Three different configurations are possible for the shape of mesh elements for 2D members:
Quadrangles and triangles

Quadrangles only

Triangles only

2.2. Mesh Size

The correct mesh size is a vague concept. A finer mesh gives better results in general, but in case of
singularities or peak values, a finer mesh makes these peaks much worse.

In SCIA Engineer, the results on plates are by default already post-processed. This means that you see
results that are a bit brushed up.

The mesh size for 2D elements will be evaluated for the next project.

TC —2023/09/11 13
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Example: 02_01_Mesh_size_2D.esa

Model

The project starts with a mesh size of 1m for the 2D elements.

B Mesh setup X

Name MeshSetupl
Average number of 1D mesh elements on straight 1D members 1
Average size of 1D mesh element on curved 1D members [m] 1.000
IAverage size of 2D mesh element [m] l.oool
Connect members/nodes

P Advanced mesh settings

L L |

The loads in the project consist of only the self weight.

Results

The linear calculation is performed. When looking at the internal forces on the 2D element. the following
results can be shown (under Results 2 2D members - internal forces - mx)

25.00
20.00
15.00
10.00
5.00
0.00
-5.00
-10.00
-15.00
-20.00
-25.00
-30.00
-35.00
-40.00
-45.00
-50.00

mx [kNm/m]

[T T 171

As mentioned before, these results are post-processed. The post-processing configuration can be seen in
the property ‘location’ .
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There are 4 choices for ‘location’. More details can be found in section “5.1 Convention of terminology and

sign of the results”.

It is clear that the results of the option ‘In nodes, no avg.’

o

RESULTS (1) AN X

Name

¥ SELECTION
Type of selection

Filter

¥ RESULT CASE
Type of load

Load case
Averaging of peak
Location

System

Extreme

Type of values
Values

Standard result
Results on sections

Results on edges

2D internal forces

All v
No v
Load cases v
BG1 v
In nodes avg. on macro

In centres

In nodes no avg.

In nodes avg.

| In nodes avg. on macro
m_x v
| O
Qo

Lol

We use a fixed palette so to have a better comparison of results.

must be investigated.

mx [kNm/m]

Chapter 2: Mesh Generation

The results are not alike, which means that the post-processing has quite a big impact on the representation
of results. This indicates that the mesh is not fine enough.

Solution

A rule of thumb for concrete plates is to take a mesh size equal to 1 or 2 times the thickness of the plate. In

this project that would be 1 or 2 times 0.2 m for the wall and 0.3 m for the plate.
Let's take a mesh size of 0.25 m.

TC - 2023/09/11
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The unprocessed results now look like this:

mx [kNm/m]

mx [kNm/m]

The results with or without post-processing have a very similar presentation of results. This indicates that the
mesh is fine enough.

Example: 02_02_Subsoil.esa

Model

In this example a HEA200 with steel quality S235 is calculated according to the EC. The beam has a length
of 10 m and is supported by means of a foundation strip with a stiffness of 50MN/ m2. At the ends and in the
middle the beam is loaded by point forces of 50 kN.

Results

Successively, the number of elements of a beam on subsoil has increased to evaluate the influence of the
mesh refinement on the results. The results are considered in the middle of the beam.

Average Size [m] # 1D Elements | Uz [mm] [My [KNm]
10 2 -0.20 -0.18
5 4 -0.37 2.37
1 12 -0.62 8.76
0.5 22 -0.64 10.19
0.25 42 -0.64 10.65
0.1 102 -0.65 10.79

It shows clearly that a mesh refinement has a significant influence on the results.

In this case, it is important to realize that a standard mesh, satisfactory for normal beams, is insufficient for
beams on a subsoil. For this reason, SCIA Engineer allows to refine the mesh particularly for this type of
beams.
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Chapter 2: Mesh Generation

Example: 02_03_Haunch.esa
Model

A haunch imagines a structural element with a variable height. However, a 1D mesh element has a constant
height. Because of this, it is necessary to design these beams with a variable height by means of a finer
mesh.

In this example a haunch with a length of half the beam is considered. This beam has a width of 100 mm, a
length of 4 m and concrete quality C25/30 according to the EC. The height of the haunch varies between
1000 mm and 200 mm. The whole is loaded in the middle by a point force of 250 kN.

Results
If for example the number of finite elements per haunch is chosen as 2, then the haunch is divided into two

segments during the mesh generation. Subsequently the section in the middle of each segment is
determined. This segment will be used for the finite element.

|
|
e | Ler2 | Ler ‘ Lfe/2

X

Lfe = Lh2 Lfe = Lh2

The number of finite elements per haunch is increased and the influence on the global maximal deflection of
the beam is analyzed:

# FE per haunch | Uz [mm]
2 -45.89
5 -48.40
10 -49.69
20 -50.15
50 -50.29

The results show that a higher number of elements will approach the real haunch better. On the other hand,
the number of elements is not directly in proportion to the precision. This example shows also that using
about 10 mesh elements is already sufficient to receive an accurate result.

So, it is not necessary to use an extremely high number of elements.

TC —2023/09/11 17
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2.3. Elastic Mesh

Example: 02_04_ Elastic_mesh.esa

In the project “Mesh_Elastic.esa” we are going to show the effect of using an elastic mesh.

Model

The model has the dimensions shown in the image below.

Steel S235

Plate thickness: 25mm
Height stiffener: 200mm
Height column: 1000mm

1000

) e
[]
(=]
=

P
N
T Bolts M32 i
100 100 600 100 100
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Results

Chapter 2: Mesh Generation

First the mesh is generated without the elastic mesh. This can be set in the mesh settings:

B ' Mesh setup

Name MeshSetupl
Average number of 1D mesh elements on straight 1D members 1

Average size of 1D mesh element on curved 1D members [m] 0.200
Average size of 2D mesh element [m] 0.200

Connect members/nodes

4 Advanced mesh settings
4 General mesh settings
Minimal distance between definition point and line [m] 0.001
Definition of mesh element size for panels Manual

Average size of panel element [m] 1.000

Elastic mesh

B & 0K Cancel

The global mesh setting is 0.2 m.

The mesh can be generated by using Tools > Calculation & Mesh > Generate Mesh

The mesh can be displayed by the view parameters. These can in the graphical display bar under View

settings for all entities > Structure > Mesh > Dra  w mesh.

The elastic mesh in the mesh setup provides a fluent transition between mesh sizes.

Elastic mesh on (default setting): Elastic mesh off:

e X \

2.4. Automatic mesh refinement

SCIA Engineer offers a feature called Automatic mesh refinement. A fine mesh of finite elements produces
more accurate results than a coarse mesh. But to find the correct fine mesh is sometimes a very hard task

for a user. Therefore, we developed a solution for automatic mesh refinement which reflects state of the art

error estimation methods. The benefit of the method is also that information is given about the quality of

results due to the used mesh density of two-dimensional mesh elements.

TC —2023/09/11
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Example: 02_05_Mesh_Automatic.esa
Model

The model is composed of a ground and top floor, separated by multiple columns.

Results

As indicated in the example about mesh refinements, the mesh can be judged by going to a 2D result, and
setting the ‘Location’ to ‘In nodes, no avg.’ . In the image below, the moment mx has been asked for the
self weight.

The mesh is certainly not good enough. You can see that there are incoherent results and peak values near
the columns.
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Solution

Now we will perform an automatic mesh refinement based on the results for the self weight.
To perform the automatic mesh refinement, the next steps are required.

1. Activate the automatic mesh refinement.
a. Go to the mesh settings.
b. Activate both elastic mesh and automatic mesh refinement.
c. Choose the load case and the target error for the mesh refinement.

B ' Mesh setup X

Name MeshSetup1
Average number of 1D mesh elements on straight 1D members 1
Average size of 1D mesh element on curved 1D members [m] 1.000
Average size of 2D mesh element [m] 1.000
Connect members/nodes
4 Advanced mesh settings
4 General mesh settings
Minimal distance between definition pointand line [m] 0.001
Definition of mesh element size for panels Manual ne

Elastic mesh El

Use automatic mesh refinement @

Target error for mesh refinement [%] 10

Group of selected load cases for mesh refinement LC1

4 1D elements

H,D ’71‘9’ ,'_ol~ 1 OK l Cancel F

" M

2. Perform the linear calculation. You will also receive information about the error estimation for the load
case configured in the previous step.

SCIA Engineer: End of analysis X

Mesh generation: OK

Calculation of static load cases: OK

Linear analysis: OK

Maximal transfltion -13.2 mm

in node 175 [0.000,5.000,3.600] (load case LC1)
Maximal rotation -3.2 mrad

in node 179 [0.000,1.000.3.600] (load case LC1)
Sum of loads and reactions is OK

I Quality of numerical solution due to 2D FE size 31.88%'

3. If desired, you can check the numerical error under results > 2D members > Numerical Error &
mesh refinement.

4. To perform the automatic mesh refinement, you must manually click on the mesh generation. This
option can be found under Tools > Calculation & mesh.
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5.  Now perform the linear calculation again. The estimated error will have reduced, since the mesh has
been refined.

SCIA Engineer: End of analysis X

Mesh generation: OK
Calculation of static load cases: OK

Linear analysis: OK

Maximal translation -14.2 mm

in node 891 [0.000,5.000,3.600] (load case LC1)
Maximal rotation -3.2 mrad

in node 904 [0.000,0.750,3.600] (load case LC1)
Sum of loads and reactions is OK

Quality of numerical solution due to 2D FE size 20.40%

6. To go even further in the mesh refinement, run through steps 4 and 5 until the desired result is
achieved.

After just 1 mesh refinement, the mesh is now locally refined.

LR LT -
AR IAZTA S
L2 KIS A TS
EIRLRLTRLLLARLA 7 <25
L ELILILLRANT
225 ..3.:@.:..'
i

0'.0"0
258 L 7 S
NN

X ZAD
e PR
RIS
RIS CZRARAZR AR

2 LA Z2

L2

To improve the results, we advise to also add averaging strips. This is treated in the chapter about
singularities.

22 TC - 2023/09/11



Chapter 2: Mesh Generation

2.5. Warning : Elements with angle < 5°

If there are mesh elements with an angle < 5° the program gives a warning during the mesh generation with
the numbers of these elements. These elements give inaccurate results. Usually, it is about an error in the
geometry input. The inaccuracy of results reveals itself in the neighborhood of this mesh element. Therefore,
it is suitable to correct them, for instance by local mesh refinement.

SCIA Engineer: End of analysis X

0 Mesh generation: OK

There are 5 elements having an angle smaller than 5.000
degrees. The results on these elements are less accurate.
Therefore it's suitable to correct the model.

Tip: These elements can be highlighted via view flags: View
parameters setting / Misc. / Calculation info / Display arrow
on mesh elements.

(Element 37 in slab S1...)

Calculation of static load cases: OK
Linear analysis: OK

Maximal translation -17.6 mm

in node N2 [0.001,0.000,0.000] (load case LC1)
Maximal rotation 4.1 mrad

in node N1 [0.000,0.000,0.000] (load case LC1)
Sum of loads and reactions is OK

To track these mesh elements, view flags will point to these mesh elements with angle < 5° and they give the
name of the 2D element to which these mesh elements belong. Flags can be activated via right clicking in
the graphical scene and choosing View settings for all entities > Misc. > Calculatio  n info > Display

arrow on small mesh elements.

Sma|l mesh element (slab S49)

Sma|l mesh element (slab S46)

NEEN
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2.6. Display of Mesh nodes and Mesh elements

The labels of the mesh nodes, 1D and 2D elements can be displayed via View Settings for all entities >
Labels > Mesh . This makes it possible to recover the elements of the above-mentioned warning or to have a
look at the results in a specific node of the deformed mesh.

View parameters setting
Check / Uncheck gro...
4/ T Structure Labels g] Model [
E‘ Check / Uncheck all
[][Mesh
Display label [—V‘
Nodes [
Elements 1D [
Elements 2D l-:
\\\ // ///
\\ // /
e
/ —_| / 39
/
// [ == /
4 / \\ //
/ \\v/\
/ 7
7 « // T
/ \
/ —~——
/// \\_
vz
/
7]
/
v &1
e
/
t—|
—

Further, this option also allows verifying for example the number of 1D elements on a beam.

N

AV4
/17N 3 4

AN ZNN

)
ol

Representing these labels is only possible after generating the Finite Elements mesh.
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Chapter 3: Distribution of the loads

The solver of SCIA Engineer knows 3 types of loads on the finite element mesh:
» aconstant surface load on a 2D element.
This load works according to a local axis of the element, or according to the global axis
« apoint force in a node of the element mesh
* apoint moment in a node of the element mesh

The loads that are inputted in SCIA Engineer, are recalculated to loads on the finite element mesh as
follows:

Introduced load Is converted to:
2D surface load Surface load on 2D elements
Free load — Rectangular or polygon Surface load on 2D elements; those are located

completely into the charged surface. If 2D elements
are charged patrtially. this load is converted into point
forces on the nodes. The load on each 2D element is
constant. A linear load is translated in a load that
goes off gradually.

Free load — Line load or point force Point forces on nodes
Free load — Point force (moment) Point moments on nodes
1D line force or 1D point force Point forces on nodes
1D line force or 1D point moment Point moments on nodes

A point force is translated into forces on nodes of the mesh — without moments. The error created by this is
generally smaller than the error caused by a finite division in elements. The error converges to zero when
refining the mesh.

After the calculation, the loads on the finite element mesh can be looked at via Results > surface loads.

For larger projects, it is not necessary to calculate the entire structure in order to examine the division of the
loads: start the calculation and choose the option Test input of data instead of Linear analysis in the
dialogue box for the calculation. The loads are spread over the mesh, but the structure is not calculated.
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Chapter 4: Calculation — Solution Methods

During the calculation, the solver has to formulate and solve the following system of equations:

F=K.A

In this equation, F represents the force matrix, K the stiffness matrix of the structure and A the displacement
matrix. For large projects, this involves a system that solves tens of thousands of equations (e.g. 40.000
nodes = 240.000 degrees of freedom = 240.000 equations).

To solve this system, two solution methods have been implemented in SCIA Engineer: the Direct Solution
and the Iterative Solution.

4.1. Direct Solver

This is a standard Cholesky solution. based on a decomposition of the matrix of the system. Using this
method, the system is solved directly into the displacements.

The advantage of this method consists of several right sides that can be solved simultaneously. This means
that all linear load cases can be solved collectively. This type of solution is especially effective for little and
medium-sized problems. The limit depends on the size of the problem and consequently the size of the
available RAM memory.

Generally, it can be said that this solution is more convenient for most of the problems.

The disadvantage of this solution may emerge with extremely large projects. The calculation time may rise
considerably when the RAM size is unsatisfactory. What's more, the problem cannot be solved at all when
the available disk space (for memory swapping) is inadequate.

If the problem is big and of poor numerical condition, the rounding error may be so big that it exceeds the
acceptable limit. This may result in an imbalance between results of load and reactions. The difference
between the total sums of loads and reactions should not be bigger than about 0.5%. But even a value of
0.1% suggests that the results may be suspicious.

The total action and reaction per load case can be found in the Calculation protocol under Results.

If this imbalance appears, the program gives a warning and you should choose the iterative solver. A precise
value of the number of elements in a project which would lead to this problem cannot be defined, because
the rounding errors also depends greatly on the ratio of the stiffnesses of the elements.

4.2. lterative Solver

The Incomplete Cholesky conjugate gradient method is applied. With this method, an assumed value for the
displacements is introduced in the system. Subsequently the forces F are calculated and compared to the
inputted forces. From this, new displacements are deduced. In that way, the displacements are calculated
iteratively.

The advantage is a minimal demand on RAM and disk size (a project with 150.000 nodes requires about 250
MB RAM memory). Therefore, the solution is convenient especially for extremely large projects that cannot
be solved by means of direct solution or whose calculation time would be enormous for that kind of solution
due to excessive disk operations.

Another advantage is that due to the ability of continuous improvement of the accuracy, the method is able to
find a technically accurate solution even for equation systems that would be numerically unstable in the
direct solution.

The disadvantage is that the method can only employ one right side at a time and this increases the time
demands for equation systems with several right sides.

The desired solution method can be established under Tools > Calculation & Mesh > Solver settings
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Chapter 5: Results

5.1. Convention of terminology and sign of the resu Its

The following internal forces are given in relation to the finite elements. The indicated directions of the
internal forces declare the positive directions. The action on the 2D mesh elements is drawn.

For bending (2D plates. 3D shells) :

Bending moments mx . my

ZP
my
A
- P
P ¥
my f//
a
.-’-‘JJ
-
. mx=—‘[lcsx.z dz
1
o m =- Lcr},.z dz

In case of homogeneous plates. the stress on the positive side z = +h/2 is:

Ox = -my / W. gy = -my / W. with W =h2/6.

Torsional moment mxy

zF

In case of homogeneous plates. the stress on the positive side z = +h/2 is:

oxy = 'mxy /W. Wlth W = h2 / 6.

28
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Shear forces gx. qy

Q== [T. &

\L qy q},=—‘[l’|:w dz

Ox

The vertical components of shear stress are 1y, = -gx / h, Ty = -gy / h, constant across the thickness
(Mindlin). More general, they can be understood as mean values for the interval -h/2 < z < h/2.

For membrane effects (2D walls. 3D shells) :

Membrane forces nx. ny

zP

The normal forces are ox = nx/h. oy =ny/h.

Shear forces gxy

qw=thy dz

Uy

The horizontal component of the shear stress is Txy = qxy / h.
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5.2. Comparison between a membrane and a standard e lement

When you compare a membrane element with a general 2D-element, then you can conclude that the
bending moment mx equals 0 in this structure.
The figure below represents the stress ox in both elements.

Marment

mx [kNm/m]
063
058
0353
048
042
037
032
027
022
017
011
0.08
001
-0.04
008
014
-0.20

sigx+ [MPa]

42
38
35
31
28
24
24
1.7
1,3

Biress Sigma X+

A plate element that is modeled in Plate XY environment will only take bending forces.
A wall element that is modeled in Wall XY environment will only take membrane forces.

It is however important to note that every 2D element that is modeled in a General XYZ environment can
take both bending and membrane effects. This means not only shell elements, but also plate and wall
elements modeled in General XYZ can take both bending and membrane effects. Unless of course it is
defined as a membrane element, because then the elements have only axial stiffness and will therefore take
only membrane forces.

To define an element as a membrane element a nonlinear analysis should be run.
Also, the module ‘Cables & Membranes’ is needed.

By making use of membrane elements, it is possible to neglect bending effects.

LCS mesh element and LCS-Member 2D

The x and y axes in which the internal forces are defined, as drawn above, may be the local axes of the
mesh element (LCS mesh element option) or the local axis of the 2D element (LCS-Member 2D option).
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5.3. Detailed results in mesh node

The internal forces of 2D-elements can be claimed for each mesh node or element. This is illustrated through
following example.

Example: 05_01_ Results_mesh.esa

A plate supported on two edges is loaded by its self weight and a permanent surface load. Out of these two
load cases an ULS and SLS combination are generated. Subsequently, the mesh is activated and by way of
View parameters for all entities > labels > mesh  the numbering of the mesh elements and the mesh
nodes are displayed graphically.

Then the values for mx and the ULS-combination are claimed by means of Results > 2D members >
internal forces.

4.50
2.00
0.00
-2.00
-4.00
-6.00
-8.00
-10.00
-13.00

mx [kNm/m]

When drawing the results for a combination or Result class, then the property Envelope (for 2D drawing)
should be set.

Since combinations are normally generated in SCIA Engineer, this means that one combination definition
contains the results of all generated combinations.

The value “Minimum” will show the minimum values of these generated combinations.
The value “Maximum” will show the maximum values of these generated combinations.

The value “Absolute extreme” will show the value max [ abs (minimum value), abs (maximum value) ].
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5.4. Results in elements and mesh nodes

After a calculation of the structure, the deformation of the nodes and the reactions are calculated exactly
(displacement method). These are represented in the menu Results > 2D Members > Deformations and
Results > Supports > Reactions.

Deformations of nodes and reactions are the most accurate. The internal forces (and stresses) are derived
from these quantities by means of the adopted basic functions and are always less accurate using the Finite
Elements Method.

The internal forces of 2D elements are given in the menu Results > 2D Members > Internal forces. Here
are 4 possibilities:

* Incenters

* In nodes no avg.

* Innodes avg.

* In nodes avg. on macro

In centers

The average of the results, calculated in the four nodes of the quadrilateral finite element, is shown in the
center of gravity of the element.

There is just 1 result per element, so the picture with isobands is a ‘mosaic’. The development in a section is
multi-stage curve.

In nodes no avg.

The result value in four nodes of the quadrilateral finite element is considered. The distribution of a particular
result quantity is considered linear over the element. No averaging between adjacent finite elements is
performed. This provides that the four values of the adjacent elements are shown in a node.

If these 4 results differ considerably, this indicates that the applied mesh is too coarse. In such cases, a
mesh refinement should be applied on those positions. This reproduction of the results gives a good idea of
the discretization error in the calculation model.
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In nodes avg

Like the option above, but the result values from adjacent finite elements are averaged to smooth the
distribution of the result from one element to another.

In some cases, it is not allowed to take the mean value of the internal forces in a node:
» 3D shells if the local x and y-axes of the 2 members do not coincide.
« If aresultis discontinuous, for example the shear force at the line support of a plate: the peaks
disappear completely when averaging the positive and negative shear forces.

4.50
2.00
0.00
-2.00
-4.00
-6.00
-8.00
-10.00
-13.00

mx [kNm/m]

In nodes avg on macro

Like above, but the average is performed only for the elements of the same slab. On the connection of two
slabs, the results from different slabs are NOT averaged. This solves the problems mentioned above.

TC - 2023/09/11 33



Advanced Concept Training — FEM Analysis

Example: 05_02_Results.esa
Model

In this example, a plate of 5 m x 5 m with fixed translation in Z-direction for the 4 edges is calculated. The
plate is made of concrete C25/30 according to EC, with a thickness of 100 mm and loaded by a point force of
100 kN in the middle.

Results in Nodes no avg.

The solver internally calculates the internal forces in integration points and at the end the calculated values
are extrapolated from the integration points to the nodes of the 2D element using the formulas for a
hyperbolic paraboloid.

Results in Centers

The result in the center of the mesh element is the (simple) average of the results in nodes no avg. of all
nodes of this element.

For mesh element 60:

79 80 79 80
9 1.30 17
60 1.55
3 1.93 1.80
70 71 76 71
Nodes no avg. Center

Results in Nodes avg. / Nodes avg. on macro

The averaged results of the moments are determined by first averaging and then smoothening.
The other averaged results are determined by only averaging.

While the values of moments in the integration points correspond to the theory, their extrapolation to nodes
using the hyperbolic paraboloid leads to some loss of accuracy. The reason is that the hyperbolic paraboloid
does not replace the distribution of the moments over the element with a satisfactory precision.

The calculation of the values of moments in nodes in SCIA Engineer uses an improved algorithm that
replaces the hyperbolic paraboloid extrapolation with an advanced shear-force-integral method. As the
distribution of shear forces over the surface of the element is assumed to follow the shape of the hyperbolic
paraboloid (second order surface), the integral of this surface represents a third order surface that
approximates the moment distribution with a higher accuracy. This is based on the formulas for the
calculation of shear forces using the derivative of moments.

Moments are then written from these formulas:
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Integration constants mx,o and my, are calculated from the condition of the value in the center of the element
[ m,ds

4

?n.l'. Lo =i

S
[ m,dS

Mye = 2

W

With S the area of the finite element.

See also: Smoothening of non-averaged values
Example 05_03 Averagel.esa
Model

In this example, a steel structure consisting of 2 plates of 5x5 m with thickness of 50 mm is considered. The
plates are made of S235 according to EC and are fixed along two edges. The horizontal plate is loaded by a
line load of 2 kN/m.

The structure is calculated with a mesh size of 1 m and the results for my are claimed according to System
LCS — Member 2D.

Results in Nodes Avg. versus in Nodes Avg. on macro
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Concerning the plates S1 and S2, the local x and y-axes have the same direction. Also the orientation of the
local z-axis corresponds. The maximal moment in the section of the vertical plate In nodes, avg. is 3.08

kNm/m .

For the plates S3 and S4, the local x and y-axes correspond. But in this case, the orientation of the local z-
axis does not correspond. On the edge, the average of 2 equal moments with an opposite sign is taken. The
result is zero. The maximal moment in the section of the vertical plate in nodes, avg. is 2.48 kKNm/m.

The result In nodes, avg. macro gives 3.33 kKNm/m.

For plates S5 and S6, the y-axis of plate S6 corresponds to the x-axis of plate S5. On the edge, the average
of mx and my is taken, which has no significance. The maximal moment in the section of the vertical plate in
nodes, avg. is 6.78 kNm/m. The result In nodes, avg. on macro gives the correct value of 3.33 kNm/m.

1.89 kNm/m
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In nodes avg.

\Jn
-0.51 kfim/m

—2.36 kNmXp

-3.33 kNmXm

0.76 kNm/m

0.18 kKNm/m

In nodes avg. on macro

36 TC —2023/09/11



Chapter 5: Results

Example: 05_04_ Averag2.esa
Model
A plate consisting of 2 fields of 7 m x 4 m (total 14 m x 4 m) and supported on its 3 shortest edges. Concrete

quality C30/37 according to EC and a thickness 200 mm. The plate is loaded by a uniform surface load of —
50 kN/m2. The average mesh size amounts to 0.5 m and no averaging strips are used.

Results

The results are claimed for the maximal shear force vx according to the carrying axle on a section in the
middle of the plate.

In centers : 203.41 kN/m
203.41 kN/m

T e
o

—203.41 kN/m

In nodes, no avg. : 203.6 kN/m
203.60 kN/m

o] !

—203.60 kN/m

In nodes, averaging :191.54 kN/m
191.54 kN/m

e Mo
L

—191.54 kN/m

The average of the positive and negative shear force is taken on the edge.
Subsequently the result is zero so a lower maximal is obtained.

In nodes, averaging on macro : 215.66 kN/m
215.66 kN/m

. T

] |

—215.66 kN/m
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5.5. Averaging strip

This functionality provides for automatic averaging of peak results around defined points or along defined
line strips on slabs. The averaging can be applied to internal forces on slabs and to required reinforcement
areas used in the design of reinforcement in concrete slabs. This is illustrated in the following example.

Example: 05_05_AveragingStrips.esa

Model

A square slab is inputted with dimensions 2 m x 2 m. The mesh size is set to 0.5 m and a surface load of
5 kN/mz2 is inserted.

o

&

fre}
1
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Chapter 5: Results

An averaging strip can be imputed via Input Panel > Calculation & Results > Result tools > Averaging strip.
We choose the Y-direction with “Direction” set to “Perpendicular” and a width of “1m™:

Results

If we now activate the averaging of peak, we get these results for mx in nodes not averaged:

(1)
|
‘ AVERAGING STRIP (1) N
o
7 Name RS1
2D member
Type v
Direction perpendicular
Width [m]  1.000
| » POINTO
» POINT1

1.08
0.80
0.60
0.40
0.20
0.00
-0.20
-0.40
-0.77

mx [kNm/m]

i

Type of selection
Filter
| v RESULTCASE
Type of load

Load case

Averaging of peak

Location

System

Extreme

Type of values
Values

Standard result
Results on sections

Results on edges

| RESULTS (1) A X
Name 2D internal forces
| v SELECTION

All v

No v

Load cases v
BG1 v
(9

Innodesnoa... v
LCSmeshele...
Global v
Basic magnit... v/

m_x v

When you look at the results, drawn with numbers, a manual verification can be made:

-0.47 | -0.73
-0.47 | -0.73
-0.47 | -0.73
) ~0.47 | -0.73 1.02
0.83 3 —0.47 | -0.73 1.08
0.03 ) -0.47 | -0.73
-0.42 -0.47 | -0.73 0.97
>
-0.77 -0.47 | -0.73 0.08
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For the same X-coordinate, in each element the same value will be obtained. Looking at the results in
numbers without the averaging strip, the same value can be calculated taking the average of one line with
the same X-coordinate:

-0.43 -0.34 0.59
.78

0.59 ~0.37 |1.60 | —=1.52 -0.24 | 0.65 1.02

0.83 -0.36 }-1.62 | -1.53 -0.24 | 0.63 1.08

-0.42 0.84 ) \ ~0.69 5 0.97
>._.
/
\ -0.36 | 0.70 6 0.56 | —0.41
AV
=0

0.09-0.43 + 0.44 —0.37 - 0.36 + 0.40 — 0.92 — 0.36
8

= —0.18875 =~ —0.19

This averaging strip was defined as “Perpendicular” and inputted in the Y-direction. Looking at mx
(perpendicular to the Y-direction) an average will be made.

When we look at my (parallel with the Y-direction) no average will be made:

e
£ RESULTS (1) A X
1.08 Z
0.80 = I Name 2D internal forces
0.60 E ¥ SELECTION
0.40 Type of selection  All v
20 Filter No v
N ¥ RESULT CASE
020 Typeofload Loadcases v
-0.40
0.60 Loadcase BG1 v
-0.80 Averaging of peak  (@l[¥)
. Location Innodesnoa...
-1.20
140 System LCSmeshele...
-1.62 Extreme Global v
Typeofvalues  Basic magnit... v
Values m_y v
Standard result (D
Results on sections (D
Results on edges CD
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When changing this average strip from perpendicular to longitudinal:

o
| AVERAGING STRIP (1) A
oW
I Name RS1
2D member
Type S v
Direction longitudinal v

Width [m]  1.000

An average will be made for my but not anymore for mx:

mx. average longitudinal my. average longitudinal
When choosing “Direction” as “Both” an average will be made for the two directions.

Note:

The averaging algorithm uses only the finite elements that are located inside the averaging strip. This may
cause certain inaccuracies especially in combination with larger finite elements. Therefore, it is
recommended to define internal edges along the averaging strips. This ensures that finite element nodes are
generated along the edge of the averaging strip, which may significantly improve the accuracy.

The recommended procedure is thus:
« Define the model of the structure;
» Perform the calculation;
* Review the results;
» Define averaging strips;
* Review the averaged results;
« Decide the final location and number of averaging strips;
« Define internal edges along the averaging strips.

Repeat the calculation to obtain the improved results.
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5.6. Eccentric elements
Example: 05_06_eccentric column.esa

Model

In this example the effect of eccentricities is shown through a simple frame in a frame XZ environment:
e The columns are 3 m high;
e The beam is 4 m long;
« All elements have a cross-section of 300 mm x 300 mm (made of C25/30);
e Aline load of 5 kN/m is applied on the beam.

4000 mm

-5.04

3000 mm
Rectangle (300; 300)
Rectangle (300; 300)

An eccentricity can be introduced on 2 ways:
e By changing the “Member system line at” option.
e By introducing a value for ey and/or ez.

It is not surprising that several possibilities have the same effect.

For example, we set “Member system-line at” “bottom”, which would be the same as inputting ez = 150mm
(height cross-section divided by 2).

So for this example:

’ Name Bl Name Bl
Layer Layerl Vo= Layer Layerl Vo=
Type column (100) v Type column (100) v
Cross-section CS1-Rec ...\ s= Cross-section CS1-Rec ...\ #=
Member system-lin... Bottom v Member system-lin... Centre v
|

ez[mm] 0 ez[mm] 150
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Results

When looking at the moment diagram, we can notice some odd results:

e The results are non-symmetrical;
« The moment at the bottom of the left column is not zero, although the support is hinged:;
 The moment at the top of the left column is not equal to the moment on the left of the beam.

—4.06 kNm

Chapter 5: Results

~5.56 kNm \

—1.50 kNm

5.94 kNm |

When looking at the normal forces, there is nothing strange at all. Both columns take 10 kN compression
force of the line load of 5 kN/m over the 4m long beam.

—1|35(kN

—10.00 kN

—~10.00 kN

The increased moment on the left column is due to the eccentricity which has been applied.

The additional moment can be calculated as:
AM, = N e, = —=10kN = 0.15m = —1.5 kNm

This explains the moment of —5.56 kNm:
My, = My system tine + N * ez = —4.06 kNm + (—10kN) = 0.15m = —4.06 kNm — 1.5 kNm = —5.56kNm

TC —2023/09/11
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Interpretation

Why do we add the extra moment?
* In SCIA Engineer, the results are always shown for the neutral axis of the element.
e The connections between elements, supports, etc. are made in nodes, as required in a finite element
model. The nodes are always at the ends of the system lines.
» So if an eccentricity is applied, the neutral axis will no longer be the same as the system line.

The recalculation of internal forces from the system line towards the neutral axis is what causes the jump in
the moment line (from -4.06 kNm to -5.56 kNm).

This is also represented in the image below.

e The first column on the left is the same as you can see it in SCIA Engineer (the light blue line is added,
representing the neutral line).

« Butin fact, you should represent an eccentric element as if the eccentricity is applied by small horizontal
elements. This is represented in the middle image.

« When you look at the internal forces of an element, these internal forces are always applied to the
neutral line of the specific element. In this case, it implies that the forces in the nodes (coming from the
beam and support) should be recalculated to the blue line. The recalculation is added to the third image
(on the right).

ez
N =-10kN
® My = -4,06kNm+(-10kN)*0,15m
c = 5,56 kNm
®
o =
£ @
= c
[ kS
= ©
z »
@
o
N =-10kN
My = OkNm + (-10kN)™0,15m
=-1,50 kNm
(=4 W.15m

SUPPORT
The same principle can also be shown by creating small stiff beams.
To do this, we have used a cross-section 3000x3000 (="very high stiffness’), which we have converted to a
numerical cross-section.

EINPE Kl

—4.06 kNm

=70
=

5.94 kNm |
[

\
—
-1.50 kNW‘L

\
KNm %
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Chapter 5: Results

Example 05_07: Eccentric beam.esa
Model

In this example, the effect on normal forces due to eccentricities is discussed. For this, we have constructed
a simple beam in a frame XZ environment:

e The beamis 6 m long;

«  All elements have a cross-section of 500 mm x 300 mm (made of C25/30)

« Aline load of 10 kN/m is applied on the beam;

e The eccentricity is inputted with “member system-line at”: “bottom” (or ez =150 mm).

As you can see, the line load is inputted on the beam and follows the eccentricity of the beam.

The supports are in the nodes, which are positioned eccentrically from the neutral line of the beam.
Results

In the results, you might notice some results which you intuitively would not expect:

e Thereis a normal force (although only a line load perpendicular to the beam was applied).
e The begin and end moments are not zero, although the supports are hinged.

—22.50 kNm
: [\W -
X k
30.00 kN 22.50 kNm

o I e e

— 7 |

|

—30.00 kN
= With eccentricity

—90.00 kN
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Interpretation
First let's run over the effect of bending without the eccentricity involved.
No eccentricity

The results in SCIA Engineer for this same case (without eccentricity) would be:

1
=

45, kN
30.00 kN .00 Khim

o i e

————

—30.00 kN
= No eccentricity

JAN JAN

e The top fibres are in compression due to the bending stress. So they also become shorter.
M, *z
OBending — yT =Exe

. Due to a line load of 10kN/m over a length of 6m, the maximal moment would be:
gx1> -10 x(6)? =360
My,max = 8 = 3 = g = —45kNm

You can see this corresponds perfectly with the result shown above.
The difference in sign is merely a difference in convention used by SCIA Engineer.

. Due to this moment, the top fibre is compressed and will become shorter.

e The bending stress is zero in the middle of the beam (= the neutral axis).

e The bottom fibres are in tension due to the bending stress. They would become longer.
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With eccentricity

Due to the eccentricity, the supports are at the position of the bottom fibres (in the circles in the next
image). These bottom fibres would normally become longer due to bending, but the supports do not allow
these displacements.

Load

Bending stress

As a result, the supports force the elongation at the bottom fibre to be zero by means of a reaction force.
This can also be seen in the results.

e The reaction force R, from the supports introduces a normal force in the beam.
This is a constant normal force of -90 kN over the beam.

. Due to this reaction force, there will be no elongation at the bottom fibre.
«  And due to this reaction force at an eccentricity e,, the moment line is shifted.
AM =N=xe, ==90%0.25m = —-225kNm

This causes the moments at the begin points to be -22.5 kNm and the maximal moment to be shifted up from
45 kKNm to 22.5 kNm.

i
=

45,
30.00 kN .00k

T

———T—T1_ T |

—30.00 kN

z No eccentricity

AN /N
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Chapter 6: Torsion — connection between plate and column

Chapter 6: Torsion — connection between plate and ¢ olumn

If a 1D member is connected to a 2D member in a single node, this can introduce problems.

The 2D element will not be able to transfer all forces from the 1D element in just the node.
*  Peak results will appear in the 2D element.
e The connecting node will seem to be partly hinged.

Thus, when a structure consists of a plate with a column on top of it, you should pay extra attention to this
when there is a question of torsion.

If the plate is subject to forces or moments, which cause torsion, very large deformations may occur. The
reason for this is the lack of a degree of freedom in SCIA Engineer, namely the rotation around the z-axis.
In other words, the moment mz is not present when asking for the internal forces of a 2D element.

The solution for this matter is the application of ‘dummy-members’ at the location of the connection between
column and plate.

This is clarified with the following example.
Example: 06_01_ Column_plate.esa

Model

Column with a dimension of 500x500 mm and a length of 4 m are attached to a plate of 4x4 m with a
thickness of 500 mm.

As load case, two point forces of respectively —1 kN and 1 kN are applied on the edge nodes of the plate.
These forces are lying according to the global X-axis. In this way, the plate will be subjected to a rotation in
its own surface without any transformation of the geometry.

1.00.
=
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Results

When the value U_total (Results > Nodal displacement ) in the plate is examined then very large
deformations seem to appear. This is especially the case at the location of the edges.

&
S\
o
q
=)
)09
0\5\/})
= &
5 F%—ﬂ X
)O-e
0\3\/}7
7

This phenomenon can be ascribed to the fact that the plate has no rotational stiffness around the Z-axis.
‘Energy less’ deformation occurs, which means that the plate does not know any resistance against the
deformation @-.

However, in the middle of the plate it is remarkable that this deformation will be much smaller. In fact, they
are nearly equal to the deformations of the plates on which the dummy-members are fixed, which we will see
in the next section. This means that an infinite rigidity is ascribed to the connection plate-column. You can
verify this by comparing the deformation of this node in the plate with the deformation ¢ of the column:

\

N

-0.139
-0.160
-0.180

\
N

X, X
¢z [nrad]

NN

A\

-0.200
-0.220
-0.240
-0.260
-0.280
-0.319
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Solution

Dummy elements

The top of the column must be connected to the plate with more than just a node. By applying small
horizontal beams over the top of the column, it is possible to connect the edges of the finite plate elements to
the top node of the column.

Applying two crossing dummy-members at the connections is a way to get a correct approach of the reality.
These are attached to the plate by means of internal edges. This way, the small beams will take the rotation
of the plate on themselves, so the plate has a stiffness around the Z-axis. In this case, the large
deformations at the edges will be gone.

In the example, a variation of the length of the beams is applied to verify the influence on the deformations.
With this you receive the following results with a constant mesh of 0.25 m:

Length of dummy nxy max @, max U_total
[m] [KN/m] [mrad] [mm]

0 57.54 -0.302 270.206
0.05 145.75 -0.139 0.564
0.1 27.35 -0.141 0.449
0.15 23.24 -0.137 0.428
0.2 13.35 -0.140 0.419
0.25 10.80 -0.140 0.414
0.35 6.21 -0.142 0.409
0.5 3.55 -0.142 0.407
0.75 1.80 -0.143 0.406
1 1.77 -0.143 0.406

Several conclusions can be drawn:

* When applying members of a very short length, this will affect the rotation and deformation
sufficiently .

* Increasing the length of such a dummy-member will only have a small influence on the deformation
and rotation.

* nxy, on the other hand, is more influenced when increasing the length: the larger the beams, the
smaller the shear stress in the plate.

» The shear force varies little when a length of approximately half the section of the column is taken.

 When using a length of the same dimensions as the section of the column , plausible results can
be expected.

» The section of the beams has a significant influence on the shear stress: a greater section gives rise
to a smaller shear stress and reverse.

- Preparatory to an analysis, a width equal to the dimension of the column and a height equal
to the thickness of the plate can be considered.
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Mesh size

Subsequently the size of the mesh is varied when using a constant length of the dummy-beams, namely
0.25 m. The following results can be summarized in a table:

Mesh Size nxy max @; max U_total
[m] [KN/m] [mrad] [mm]

1 4.13 -0.139 0.411

0.5 7.65 -0.140 0.412
0.25 10.80 -0.140 0.414
0.125 15.05 -0.140 0.415
0.1 14.44 -0.144 0.416
0.05 26.20 -0.140 0.416
0.025 39.58 -0.140 0.417

Also the following conclusions can be drawn:
» The deformation and rotation are only influenced by the size of the mesh to a very limited extent.
» The shear stress is more influenced: it increases as the size of the mesh decreases.
- Preparatory to an analysis. a mesh equal to the length of the beam or double of the length can be
taken, depending on the thickness of the plate.

Example: 06_02_Moment mz Walls.esa

Model

When two walls are connected with a beam, a similar phenomenon appears. A solution can also be found in
this case by means of the application of dummy-members as in the following figure:

Two walls with a dimension of 4x4 m are connected with each other by means of a beam with a length of
4m. This member is loaded in the middle through a point force of 10 kN.

Results

When applying dummy-members with a variable length, the following results are obtained:

dur#ri;?tt)gam Field moment Moment at the ends ®:
[m] Mz [kNm] Mz [KNm] [mrad]
0 9.99 0 0.277
0.2 6.41 -3.59 0.078
0.4 6.20 -3.80 0.067
1 6.18 -3.82 0.065
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Even though the beam is fixed on both walls, it seems that this one has a moment of zero at the
connections. In other words, it looks like there are hinged connections. When using dummy-beams, these
moments rise slowly.

The walls show a much lower resistance against rotation around the Z-axis when there are no dummy-
beams. This can be verified for the rotations .. As in the previous example, there is a lack of rotational
stiffness around the vertical axis.

Also in this case it can be solved by applying little beams to take care of this rotational stiffness. This effect
becomes clear when the deformation of the connecting beam is verified:

Lhotat ]

BURSRSRRIRAREE Bef

FR——g

In the top structure, there are no dummy-members. In this case, the beam has the largest deformation
because there is no transition of the moment at the location of the connections. In the following structures,
the rotational stiffness is taken on the dummy-members and the beams will bend less than in other cases.
Because of this, the moments at the ends will differ from zero. This way there is a better approach of reality.
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Introduction

There are no general methods to define the element size that has to be used in the calculation of certain
structures. However, there are some basic rules, which will be explained below:
« asimple method to define the correct element size experimentally
« experience of the calculation of practical examples with this element type
< understanding into the singularities if the result does not converge to the sought solution.
A refinement of the mesh does not offer any outcome in this case.

With a lack of experience with similar structures the experimental procedure- as mentioned below- will be in
most cases the only method to define the right element size:
1. Calculate the structure with an element size L.
2. Calculate the structure with an element size L/2.
The element size can be altered for the entire structure or just around the location of the sought result.
3. Compare the results and verify the differences (maximal field moment, maximal moment at the edges,
maximal stress, theoretical needed reinforcement,...).
If this result is larger than the intended accuracy, it will be necessary to continue to refine the mesh.

The first rule for an initial choice of the element size exists of equating L with the thickness of the plate.
Obviously, this is not applicable for thick plates. A second rule says that there has to be 5 to 10 elements per
edge.

As mentioned above the option ‘in nodes, no averaging’ gives a good indication of the accuracy of the used
mesh.

Further in this chapter, a few examples of ‘patch tests’ are given, in which the influence of the mesh
refinement on the results can be verified. A finer mesh will lead to more accurate results but has a larger
calculation time as a consequence.

However, in some cases the results of the finite elements calculation does not converge to the expected
result. In such cases an increased mesh refinement does not offer a good solution.

Three examples of such singularities that occur in real terms are discussed in the paragraph “Singularities”.
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7.1. Patch test plate — Comparison with beam elemen

Example: 07_01_ Patchtest_1.esa

Model

A beam with rectangular section (width 1 m x height 0.3 m) is compared with a plate. The span is 8m, the
beam is fixed at both sides and loaded with a line load of 100 kN/m. The material is C25/30 according to EC.

The coefficient of Poisson is equal to 0 to eliminate the transverse deformation of the plate.

Results

The result of a beam calculation in SCIA Engineer is taken as reference. The reason for this is that SCIA

Engineer takes the shear force deformation into account in the standard way.

The results for the internal forces are claimed in nodes, avg.

The maximal deformation U_total (reference result: 15.3 mm):

Element size # elements Uz

[m] along the length [mm]

2 4 -11.2
1.3 6 -13.4

1 8 -14.2
0.8 10 -14.5
0.4 20 -15.0
0.2 40 -15.2

56

Utotal [mm]
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The maximal field moment mx (reference result: 266.67 kNm):

Chapter 7: Choice of the element size

Element size # elements mx

[m] along the length [KNm/m]

2 4 268.52
1.3 6 270.73

1 8 268.71
0.8 10 268.56
0.4 20 266.12
0.2 40 265.99

The maximal moment at the ends (reference result: -533.33 kNm):

Element size # elements along mx

[m] the length [KNm/m]

2 4 -525.74
13 6 -520.68

1 8 -519.37
0.8 10 -520.22
0.4 20 -542.59
0.2 40 -552.28

Next, the results are grouped in a convergence curve:

1,050
1,025
1,000
0,975
0,950
0,925

Result / Reference result

0,900
0,875

Conclusions:

Patch test: beam vs. plate

e | 7

/

8

# elements on edge

mx, mid mx,end

* The results converge to the exact solution
e The field moment is always precise

The moment at the edges (peak value) and the deformation require about 10 elements.
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7.2. Patch test plate — comparison with analyticre  sults

Example: 07_02_Patchtest_2a.esa and 07_03_Patchtest _2b.esa

The maximal deflection, the maximal field moment and the maximal moment at the edges of a plate fixed on
the four edges are compared with analytic results.

Model

a

OV I I 000999999
Length: a =5m
Thickness: t = 0.02m
Surface load: q = -10kN/m?

a Steel: S235 according to EC

E = 210000 N/mm?
v=0.3

K o

The plate is calculated in SCIA Engineer as well with Mindlin elements (Patchtest_2a) as Kirchhoff elements
(Patchtest_2b).

Reference

S.P. Timoshenko and S. Wotnowsky-Krieger, Theory of Plates and Shells, 2" edition, Mc Graw Hill, New
York, 1987.

Analvtic results

Deflection in the middle of the plate:
f=0.00126 ga*/D.withD=Et/(12 (1-v?)) > f=-51.187 mm

Moment in the middle of an edge:
M =0.0513 g a2 > M =12.8825 kNm/m

Moment in the middle of the plate:
M =0.0231 q a? 2> M =5.775 kNm/m
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FEM Results

The results for the internal forces are claimed in nodes, avg. The graph shows the Result / Reference result.

The maximal deflection Uz in the middle of the plate (reference result: 51.187 mm)

# Elements | Mindlin | Kirchhoff Uz - center of plate
element element 14
1.2
4 0018 | -63.477 % )
16 49.221 | -59.339 | 2 08
25 42382 | -49.184 % 0.6
100 51.039 | -52.827 | <
400 -51.325 | -51.764 O'z
2500 -51.405 -51.462 4 16 25 100 400 2500 10000
10000 | -51.416 | -51.418 o= Vindlin === Kirchhoff

The maximal moment in the middle of an edge (reference result: 12.8825 kNm/m)

# Elements | Mindlin | Kirchhoff Mx - mid edge

element element 12
o 1

4 5.078 8.427 e
o 0.8

16 11.791 10.753 L
T 06

25 11.687 11.024 )
> 04
100 12.999 12.787 2 0w
400 12.897 12.851 0

2500 12.845 12.839 4 16 25 100 400 2500 10000

10000 12.836 12.835 e=@== \indlin e=@==Kirchhoff

The maximal moment mx in the middle of the plate (reference result: 5.775 kNm/m)

#Elements | Mindlin | Kirchhoff M - center of plate

element element 14

4 5.078 5.010 % Li ‘A'—‘r —a °
16 6.675 6.452 8 08
25 5.454 5.318 % 06
100 5.855 5820 | & %
400 5.757 5.749 o
2500 5.731 5.730 ’ 4 16 25 100 400 2500 10000
10000 5.727 5.726 ==@==|\lindlin === Kirchhoff

Conclusions:

* The results converge to an exact solution
« 5 elements along the field give approaching values, 10 elements along the field give accurate values.
< The Kirchhoff element in this case gives a slightly better approach than the Mindlin element.

Reason: the reference result does not take the shear force deformation into account.
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hapter 8: Singularities

Equivalent plate < beam

A frequently occurring misunderstanding is the fact that the user thinks that a simple plate supported on 2
edges behaves as a beam. This is only the case without transverse contraction (if v = 0). With normal values
of the Poisson coefficient (v = 0.2 or v = 0.3) very high peaks of the reactions appear near the angles.

Mesh refinement does not offer a satisfactory solution in this case and will even increase the peak value.
This peak value is correct and converges to the theoretical value infinity by increasing the mesh refinement.
This can be explained as follows.

Consider the plate as different beams which lie next to each other. With v = 0.2, the bottom of the beam
becomes smaller, the top on the other hand becomes broader. The plate is going to bend in a direction
parallel to the supported edges, with the round side upwards (saddle forming: the plate deforms in the
bearing direction with the round side upwards). This bending is prevented by the line supports.

In a continuous plate, this will cause bending moments My in the transverse direction, approximately with a
size of 0.2 Mx. If this moment My occurred along the entire width of the plate, the reaction would be
constant. However, the moment must be zero on the free edges. So, it seems that an opposite moment 0.2
Mx exists on this edge, which leads to great reactions in the corners. In other words: at the end of the plate
the saddle forming is not prevented any more by the moments in the plate. The plate wants to deform
downwards at the end, which is prevented by the rigid supports. Because of this, very large reactions
appear.

Example: 08_01_Platebeam.esa
Model
In this example, a plate of 3 m x 10 m is calculated according to EC. The material is made of concrete

C25/30. The thickness of the plate amounts to 200 mm. The plate is supported on the long edges and is
loaded by a uniform load of 100 kN/m2.

Without the plate action, a uniform line load of 150 kN/m is expected along each border.
Results

The plate is calculated with an increasingly finer mesh. The maximal reaction in the corner increases more
and more:

443.02 kN/m
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comentsie n] | " geecion 10 [ Featon ferbl | Redeion pak
0.8 185.42 179.07 34
0.4 248.83 210.28 15.5
0.2 342.28 227.07 33.7
0.1 443.02 213.79 51.7
0.05 541.19 232.85 57

The peak in the reaction can be attributed to the infinite stiffness of the support. A realistic stiffness reduces
the peak value considerably.

In this example, the rigid supports are replaced by the stiffness of a concrete wall with E-modulus
32.000 MPa, a thickness of 0,1 m and a height of 4 m.

32000\ 100mm
=Et e =800\ =800MN/,
h 400(mm mnv m

The results clearly indicate that the flexible supports have a decreasing influence on the peak value. This
effect is given in the following diagram:

k

Plate beam - flexible vs. rigid supports

600
500
400
300
200 ’ ——
100

0

0.8 0.4 0.2 0.1 0.05
Element size [m]
e=@== max.Reaction rigid support [kN/m] ==@==max.Reaction flexible support [kN/m]2
Free edge

With a free edge, a 2D plate cannot satisfy all the boundary conditions when using Kirchhoff elements. This
effect is not a property of certain elements or the finite element method, but of the simplifications of the plate
theory.

The explanation of this effect is explained in detail in reference [4].

The figure below shows the border of a plate that is free supported (hinged supports). In a section
perpendicular to the support, a torsion moment mxy exists. The created shear stresses have to go round at
the end of the plate, which occurs along a width equal to the thickness of the plate. In this part of the plate
the shear stresses produce a resulting vertical force V.

X
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The dimension of the concentrated force V can be calculated by means of the part of the plate that is
displayed in the following picture.

In the sections parallel to the x-axis, a moment myx prevails and in the section parallel to the y-axis a moment
mxy prevails. Then the couple equilibrium around the x-axis is considered. In this equilibrium mxy and the
forces V play a role from which follows:

V = Myy

This is the case for a constant torsion moment. The vertical equilibrium of the forces with a varying torsion
moment is drawn on the picture below.

el L

rdy = vedy + my, dy

Over a distance dy, the concentrated vertical force has increased with the value dmxy/dy. On the basis of the
vertical force equilibrium, the following formula is now valid:
r=vx+ dmxy/dy

r is also called the shear force of Kirchhoff. The word shear force is not correct, since r is a reaction force of
the line support.

Analogously, concerning the reaction of the edge parallel to the x-axis:
r = vy + dmyy/dy

The torsion moment is transformed under the form of additional reactions. Only the increase of the torsion
moment seems to play an important role.

This effect is known at the end of the edge, in the corner of the plate. On the picture below, the corner of a
plate has been drawn in which two free supported edges come together. The dimension of the plate e is very
small. On the two edges outside the plate, there is no possibility for the appearance of a vertical force with a
value of myy or myx. In the sections trough the plate, they may occur. To ensure the vertical load of this
corner, there has to be a concentrated reaction with a value of mx+myx. A familiar example is the rectangular
plate with a surface load and supported on all the edges. In here, tensile forces occur in the corners.

On the free edge the reaction equals zero:

r=vx+ dmx/dy =0

This does not necessarily imply that vx or myy equal 0.
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Specifically, this means that when using the Kirchhoff elements in SCIA Engineer at a free edge, a torsion
moment mxy may occur.

When using Mindlin elements, there is an additional degree of freedom (rotation of the normal on the axis of
the plate with regard to the plate axis in deformed state) and the condition of mxy = 0 can be met. There may
occur a moment myy in the plate and the gradient of mxy may give very huge shear forces because of the
condition of the vertical equilibrium. These shear forces occur entirely in the first row of elements along the
corner. With increasing mesh refinement this shear force converges to infinity. It can be neglected during the
design.

Example: 08_02_Free edge.esa

Model

In this example a plate of dimension 5 m x 5 m is calculated with concrete quality C25/30 according to the
EC. The thickness of the plate is 0.2 m. The plate is hinged on two edges and loaded by a free surface load
of -50 KN/mz.

The plate is calculated with different dimensions of the Finite Element mesh. The results for the torsion
moment on the free edge and the shear force vx in a corner are claimed in nodes, averaging.

Results

Mindlin element:

# Elements le(kl’n‘:?n%]e V)Ekcl\?/m?r
25 12.87 175.94
100 15.45 242.78
400 12.84 345.39
1600 8.05 472.71
2500 6.46 516.55
10000 2.69 657.93
40000 0.88 800.02
Kirchhoff element:
# Elements n[qlz(Nyn??n%]e V)Ekcl\(l)/rrg?r
25 16.57 117.06
100 19.39 114.15
400 20.33 112.23
1600 20.68 110.81
2500 20.73 110.44
10000 20.82 110.14
40000 20.86 109.79
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The results are shown in following convergence curves:

Torsional moment mxy in free edge

/ — —* ¢ ¢ ¢
25 100 400 1600 2500 10000 40000
# Elements

=@=Mindlin =@=Kirchhoff

Shear force vx in corner
900
800
700
600
500
400
300
200
100 @ — C o ° ° o

25 100 400 1600 2500 10000 40000
# Elements
=@=|\indlin  =@=Kirchhoff

The above-mentioned behavior of both elements is clearly noticeable:

« for the Mindlin element:
mxy converges to the correct value zero, and
on the other hand, the shear forces increase.

 for the Kirchhoff element:
the condition mxy = 0 cannot be satisfied, even with a mesh refinement, and
the shear force converges to a constant value.
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Nodal support

In most cases, a column or pole is introduced as a nodal support. The real dimensions of the support are
neglected. In the Finite Element Method this is a singular node and the bending moment above this support
is theoretically infinite. The moment will also converge to this infinite value with increasing mesh refinement.

Refining of the mesh does not lead to the desired results in this case since the moment does not converge to
the real value.

A possibility to calculate this moment correctly is to introduce the column not as a nodal support but as a
flexible supported sub region. The dimensions of the sub region are the dimensions of the column. The
flexible support can be calculated out of the stiffness of the column. The results of such an approach are
compared to the results of a nodal support in the example below.

With an element mesh of half the dimension of the column, the model with a sub region gives a good value
of the occurring moment. The value is a little bit higher than the real occurring moment. An even finer mesh
gives unreal values. An element size equal to the dimension of the column is too coarse and gives an
underestimation of the real occurring moment.

Example: 08 03 _Nodal support.esa

Model

In this example a floor is analyzed. It is supported by columns. The plate has a thickness of 0.2 m and is
made of concrete C25/30 according to the EC. The whole floor is loaded with a surface load of 100 kN/mz.

For the calculation one field of 6 m x 6 m is considered. In the middle of this field a nodal support is inserted
to represent the column. At the edges the rotation of the plate is prevented in both directions since the plate
is stuck ‘on itself’.

In the first case the column is introduced by means of a nodal support. Secondly, the column is made as a
sub region supported by a flexible foundation. And in the last case, an averaging strip is used with the
dimensions of the column.

For the calculation of the stiffness a concrete column has been taken with a E modulus of 32.000 MPa, a
height of 4m and a cross-section of 0.5m x 0.5m.

Results
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232.01 kKNm/f

29.95 kNm
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232.01 kNm
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The structure is calculated with Mindlin elements. The results are claimed in nodes, averaging.

max. mx max. mx max. mx
Element size [m] nodal support elastic foundation Averaging strip
[KNm/m] [KNm/m] [KNm/m]
1 968.78 725.19 879.22
0.5 1193.00 731.10 1015.01
0.35 1594.68 737.66 847.04
0.25 1421.61 671.41 1068.10
0.125 1652.66 660.95 1071.67
0.0625 1887.69 531.32 1077.35

The results are shown in following convergence curve:

Max mx
2000
1800
1600
1400
1200
1000
800
600
400
200

1 0.5 0.35 0.25 0.125 0.0625
Element size [m]

=@=—nodal support elastic foundation = ==@=averaging strip

Conclusion

The results show the greatest peak value when the nodal support is used without an averaging strip.
The moment is strongly reduced when a subregion has been used.
The buffering effect of the subsoil on the result is clearly noticeable.

From this, you can conclude that the subsoil will approach reality most accurately.
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Shear force deformation

For the bending behaviour there are 2 types of elements implemented:
. The Mindlin element including shear force deformation;
. The Kirchhoff element  without shear force deformation.

With the Kirchhoff element a plane section of the plate remains perpendicular to the deformed axis of the
plate in the deformed state. This traditional bending theory is applied for thin plates and is supported by
following assumptions (ref. [8]):
. The middle plane is free of strains and stresses;
. The stress component perpendicular to the surface (0z) is negligible (o [10);
. A normal vector on the middle plane also remain perpendicular to the reference surface after the
deformation (hypothesis of Bernoulli).

For this theory the following conditions have to be satisfied:
. The thickness t of the plate is small with regard to the span L (t/L < 1/5);
. The deflections w remain small in comparison to the thickness of the plate t (w/t < 1/5).

On the other hand, the Mindlin theory doesn’t have one of the above-mentioned assumptions, namely: the
normals on the middle plane remain straight but not necessarily perpendicular to the middle plane after
deformation. As a consequence, additional strains yx: and vy arise in case of a Mindlin element.

This is shown on the picture below.
Figure a) represents the used symbols.
Figure b) shows the Kirchhoff element.
Figure c) the Mindlin element.

On figure d) a Navier balk is demonstrated, which corresponds to the Kirchhoff element.

Kirchhoff -ﬁ
d) Yt G~ :
Yoy O Mindlin

e

Navier Balk
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The choice between these two elements can be made using the menu function Tools > Calculation & mesh
> Solver settings. By default the Mindlin theory is used and because of this, special attention should be paid

to the use of thin plates.

B ' Solver setup X
Name SolverSetupl A
Specify load cases for linear calculation
4 Advanced solver settings
4 General
Neglect shear force deformation (Ay,Az>>A)
Neglect shear center eccentricity ]
Bending theory of plate/shell analysis Mindlin v
Type of solver Direct v
Minimal number of sections on member 10
Warning when maximal translation is greater than [mm] 1000.0
Warning when maximal rotation is greater than [mrad] 100.0
Coefficient for reinforcement 1
4 Effective width of plate ribs
Number of thicknesses of rib plate 20
4 Detection of adjacent beam / edge
Parallelism tolerance [deg] 10.00 v
B A A OK  Cancel

This option is only in relation with 2D elements. Specifically for beams, the shear force deformation can be
taken into account or not by means of the option Neglect shear force deformation (Ay, Az >> A)

The influence of the shear force deformation is especially important with thick plates with a small span.
Example: 09_01_ Shear force deformation.esa

Model

In this example 3 plates of 2 m x 5 m, supported at the shortest edges and made of concrete C25/30
according to EC, are calculated. The thickness is successively 300 mm, 600 mm and 1200 mm. A surface
load of -150 kN/m2, -1200 kN/m2 and -9600 kN/m2 is applied. The mean dimension of the element is 0.5 m.

16.91 mm '.

Results

The deflection in the middle of the plate:

Kirchhoff element Mindlin element % Difference
Plate 300 mm -16.90 mm -16.91 mm 0.06
Plate 600 mm idem -17.36 mm 2.65
Plate 1200 mm idem -19.12 mm 11.61
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Kirchhoff versus Mindlin on the edge of an element

In the theory of Mindlin three degrees of freedom are available on the edge of a plate element:

e w = deformation in the
local z-direction of the plate

e ¢ =rotation around ny
(rotation parallel with the edge)

e ¢ =rotation around nx
(rotation perpendicular on the edge)

In Kirchhoff's theory only two variables are needed: the variable ¢;; does not exist,
because shear deformation is not taking into account in Kirchhoff's theory.

On the edge, the following forces will be taking into account for Kirchhoff and Mindlin:
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Kirchhoff assumes a constant torsional moment on the end of the plate.

Mindlin assumes that the torsional moment mxy will become zero on the edge, but this results in high values
for vx and vy.

In Mindlin’s theory the torsional moment will go from its maximum to zero over a distance of t/2 (t = the plate
thickness). For thin plates, this is a very small area, so when using Mindlin’s theory for thin plates a lot of
finite elements will be necessary on the edges.

This is shown in the following example.
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Example: 13_01_Kirchhoff vs Mindlin.esa
Model

This next example shows two plates with a different thickness (200 mm and 2250 mm).

The mesh of this plate is 0,5 m, but on the edges a denser mesh has been inserted:

o o =4 o e e
a2 o = & S 2
3 3 3 3 2 -
J "’ || "" =
a EEEE NEWWEEWDWDE Eﬂiiiiﬂiiiiiiii =éiiiiiii
FEEEEEEE“’““‘ﬁ E!!!!MI!!!I!E!EE‘6 EE!!!U!!!!!!!!! E!!!!!!!!!!!!!!
b 5
%
Results
Thin plate:
Element Uz Max |mxy]| Max |vx| Uz Max |mxy]| Max |vy|
size edge [mm] edge edge [mm] edge edge
[m] [KNm/m] [KN/m] [KNm/m] [kN/m]
Mindlin Kirchhoff
0.50 6.2817 9.62 90.83 6.2184 15.19 15.12
0.25 6.3357 8.81 156.98 6.2173 15.00 17.38
0.10 6.3400 7.13 253.29 6.2142 15.05 19.65
0.05 6.3528 4.01 243.76 6.2140 15.05 19.96
0.025 6.3572 1.50 247.36 6.2141 15.05 18.36
0.01 6.3679 0.81 243.74 6.2141 15.05 20.05
Uz

The deformation Uz for Mindlin and Kirchhoff (in the middle of the plate) are similar and do not depend on
the edge mesh size.
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Mxy

As explained before will Mindlin results in a zero mxy using small elements. The comparison between

Mindlin and Kirchhoff is made in the diagram below:

Max |mxy| on edge
16

14
12

o N M OO

0.5 0.25 0.1 0.05
Element size [m]

=@=\lindlin Kirchhoff

When inserting a lot of elements, Mindlin will get a very small mxy for thin plates.

In this example a mesh of minimum 0.025m is needed.
This is an unreasonable small mesh to calculate with.

vy

The comparison between Mindlin and Kirchhoff is made in the diagram below:

Max |Vy| on edge

300

50

0.5 0.25 0.1 0.05

Element size [m]

250 =0 — ===
200
150
100

=@=—\indlin Kirchhoff

The small value for vy at Kirchhoff's calculation is clearly noticeable, even with a small number of elements.

But when using Mindlin, then vy will reach high values.

In the case of thin plates, calculating with Kirchhoff is a better option, because Mindlin does not get
satisfactory results, unless when inserting an unreasonable small mesh on the plate borders.
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Thick plate:
Element Uz Max |mxy]| Max [vx| Uz Max |mxy]| Max |vy|
size edge [mm] edge edge [mm] edge edge
[m] [kKNm/m] [KN/m] [kKNm/m] [KN/m]
Mindlin Kirchhoff
0.50 0.0066 2.71 15.82 0.0044 15.19 15.12
0.25 0.0066 1.71 20.69 0.0044 15.00 17.38
0.10 0.0066 0.89 17.40 0.0044 15.01 19.65
0.05 0.0066 0.36 17.07 0.0044 15.02 19.96
0.025 0.0066 0.14 16.62 0.0044 15.05 18.36
0.01 0.0066 0.08 16.52 0.0044 15.05 20.05
max |mxy| on edge max |vy| on edge
16 25
14
12 20 ﬁ/\_‘
10 15 -
8
5 10
4
5
2 \
0 — 0
05 0,25 0,1 0,05 0,025 0,01 05 0,25 0,1 0,05 0,025 0,01
g Mindin === Kirchhoff g MindEn === Kirchhoff
Uz

Deformations in the middle of the plate are different. In the case of Mindlin the shear force deformation is
taken into account, and this leads to more accurate results for thick plates.

Mxy

When the calculation is done with Mindlin for thick plates, mxy reaches low values, even with a small number

of elements at the borders (a mesh of 0.5 m).

16
14
12

Max | mxy| on edge

8
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4

2 \

0 B — —— o —

0.5 0.25 0.1 0.05 0.025 0.01
Element size [m]
=@=—Mindlin Kirchhoff
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vy

In the case of thick plates, the values for vy are similar between Mindlin and Kirchhoff, and the values remain

very small.

Max |Vy| on edge

25
20
15 —e

10

0.5 0.25 0.1 0.05 0.025 0.01

Element size [m]
=@=—Mindlin Kirchhoff

So, for thick plates, calculating with Mindlin will give the best results, because shear force deformation will
have more importance and mxy will go to zero, even for a small number of elements.

Conclusion

Thin plates
e Calculating with Kirchhoff gives the best results for thin plates;

» Using Mindlin dense mesh will be necessary on the edges to obtain good results;
« Using Kirchhoff, the size of the elements does not have to be smaller than the plate thickness.

Thick plates
» Calculating an isotropic, homogeneous plate, Mindlin will be necessary;

» Onthe edge, a denser mesh will be necessary (more than 5 elements over the half of the plate
thickness);
» Mindlin will also give reliable results for thin orthotropic plates with a small shear stiffness.
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Chapter 10: Ribs

Introduction

By means of the menu Input Panel > Structure > 2D Members > Ribbed slab  a plate can be stiffened with
members.

Arib is calculated as a beam with eccentricity with regard to the axis of the plate. The member elements are
connected to the plate at the height of the mesh nodes.

In a 2D plate project, a rib can only be inputted in the middle of the plate. In a 3D General project, the rib can
also be placed below or above the plate. After all, a rib that lies below or above the plate causes membrane
forces in the plate. Membrane forces are not present in 2D plates, only in 3D shells.

In SCIA Engineer a rib below a plate is always shear resistant connected to the plate.

The total rigidity is according to the rule of Steiner:
Rigidity beam + Rigidity plate + Surface beam x (axis-distance beam-plate)2

So, it is important to realize that also in reality the beam and the plate must be connected as shear resistant
to each other. When analyzing a prefab construction where the plate is on top of the beam, then the beam
should be placed in the middle of the plate in the calculation model.

The collaborating width of the rib is calculated implicitly by the behavior of the finite elements under
membrane forces during the Finite Elements Calculation. In the following view of the membrane forces nx in
the longitudinal direction of the beam, the effective width is clearly noticeable.

The section of the rib can be shown graphically, in that way you can see if the effective widths overlap each
other or not.

This can be done by means of view parameters, namely ‘View settings for all entities > Structure > Draw
cross-section’.
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Replacement T-section

What is explained in the previous paragraph is also valid for a member that is connected to an Internal edge
of the plate and has been aligned eccentrically. The difference with a plate rib is that for a rib an Effective
Width can be inserted too.

The Effective Width was specifically implemented to follow the code concerning the calculation of the
theoretical reinforcement. Because when the option Rib is marked with the results, a replacement T-section
is used to calculate the results. The height of the T-section is determined by the height of the beam + the
height of the plate. The flange width of the T-section equals the entered Effective Width.

The internal forces for the replacement T-beam are calculated as follows:

T the heart of the entire replacement T-section
T1 the heart of the left part of the effective width
T2 the heart of the right part of the effective width
T3 the heart of the original rib
Left part Right part
+T1 ‘
+T2
+T
z +T3
ezl

The coordinates of the hearts are used as lever arms in the Y and Z direction:

Leverarm Z1 =T1z - Tz Leverarm Y1 =Tly - Ty
Leverarm Z2 =T2z - Tz Leverarm Y2 =T2y - Ty
Leverarm Z3=T3z-Tz Leverarm Y3 =T3y - Ty
Leverarm Z =Tz -0z Leverarm Y =Ty — Qy

N = N beam + N plate, left + N plate, right

Vy = Vy beam + Vy plate, left + Vy plate, right
Vz = Vz beam + Vz plate, left + Vz plate, right
Mx = Mx beam + Mx plate, left + Mx plate, right

My = My beam + My plate, left + My plate, right + N plate, left * (Lever arm Z1)
+ N plate, right * (Lever arm Z2) + N beam * (Lever arm Z3)

Mz = Mz beam + Mz plate, left + Mz plate, right + N plate, left * (Lever arm Y1)
+ N plate, right * (Lever arm Y2) + N beam * (Lever arm Y3)

If the option Rib is activated when visualizing the plate forces, then the internal forces in the cooperating
width of the rib are set to zero. This counts for the internal forces in the longitudinal direction of the rib. The
forces perpendicular to the rib remain unchanged.

These internal forces can be set to zero for the reinforcement calculation because they are already
considered in the reinforcement calculation of the rib. Thus, the whole plate-beam is replaced by a T-beam.

However, note that when using several ribs below a plate element, the cooperating widths should not overlap
each other. If this does happen, then the values of the internal forces are counted double on the areas of the
overlapping parts.
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Example: 10_01_RIB.esa
Model

In this example, a beam is calculated with a length of 10 m and concrete quality C25/30 according to EC.
The beam is supported at the extremities, loaded with a distributed load of 200 kN/m and has following
section:

Z
B 1p00

th 200

The beam is modeled in 3 separate ways:
¢ As member element
« As plate with a thickness of 200 mm with a rib of 200 mm x 400 mm below the plate
< Entirely with Finite Elements

The whole is calculated with an average element size of 0.1 m. The results are visualized in nodes,
averaging on macro.

Results

.| Difference Finite Difference
Beam |Plate + Rib [%] Elements [%]
Maximal bending in the middle [mm] 120.9 122.9 1.6 % 122.4 1.2%
Maximal moment in the middle [kNm] 2500 2499.86 0.0% 2497.89 0.1%
Maximal shear force at the end [kN] 1000 1000 0.0% 919.51 8.1%

The results indicate that the calculation model with rib and the Finite Elements model approach the beam
well. With the Finite Elements model however, a higher deviation occurs concerning the shear force at the
end, but when refining the mesh more, this difference becomes minimal.

However, ribs that are modeled this way have a few restrictions. These are explained in the next paragraphs.
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Boundary conditions

As already said at the introduction of this chapter, membrane forces in the plane of the plate (compression
forces in the field) arise because of the rib below the plate. The plate is here shorter in the longitudinal
direction.

The supports entered on a plate + rib are located at the axis height of the plate. This is not the axis of the T-
section formed by the plate and the beam.

Concretely this means that if supports are input in the longitudinal direction of the plate, these supports will
prevent the reduction of the plate. This leads to large reaction forces and a smaller bending since the rib will
be more rigid.

Example: 14 _02_Boundary conditions.esa
Model

In this example, the same beam from the example 10_01_Rib.esa is considered. However, the plate with rib
is now tied up to both ends in the X, Y and Z direction.

Results

Beam Plate + %
Rib Difference
Maximal bending in the middle [mm] 120.9 104,0 13.98 %
Maximal moment in the middle [KNm] 2500 2183.82 | 12.65%
Maximal shear force at the end [KN] 1000 1000 0.00 %

The effect on the bending mentioned above is clearly noticeable. The reduction of the field moment can be
ascribed to the moment that occurs at the ends. This moment is caused by the eccentricity of the central axis
of the T-section in relation to the support.

The moment can be easily calculated:
The normal force in the T-section amounts to 3761.48 kN
The levers arm Z1 = 86 mm

=My = 3761.48 kN x 0.086 mm = 323.49 kKNm = 316.18 kNm
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Torsion

The calculation of a rib as a beam with eccentricity regarding the plate provides less accurate results for
torsion.

The reason for this is that the torsional stiffness of the rectangular beam and the torsional stiffness of the
plate added up do not give the torsional stiffness of the T-beam.

Example: 10_03_Torsion.esa
Model

In this example, the same beam from the example 10_01_Rib.esa is considered. The beam is clamped at
the beginning and is free at the end. The beam is loaded with a distributed torsional moment of 50 kN/m.

To obtain an accurate reference result, the torsional moment of inertia of the T-section is calculated exactly
by way of a Finite Elements calculation with element size 5 mm.

B | Cross-section X

Name CS2 fo)
Type Tg
Detailed 600; 1000; 200; 20(
Shape type Thick-walled
4 Parameters

¢ [N/m] Material €25/30 o
0.00 H[mm] 600
!_0_31 B[mm] 1000
M. th [mm] 200
0.92 sh [mm] 200
123 4 General
Draw colour Normal colour v
154 Coour ——
.'1‘84 AutoDesign constraints
-2.15 Fabrication concrete v
-2.46 4 Concrete
-2.77 Curve dividing 36
-3.07 Editjoints
._3438 Editcuts
.-3.69 4 Fibres and Parts
.4-00 Fibre textzoom 1.0 v

Edit named items
4 2D FEM analysis
Use 2D FEM analysis [ %
Calculation type Grashof-Jourav v
Mesh size [mm] 5
Min. point distance [mm] 0

Shear area Ay With Txz v
Shear area Az With Txy v
Show mesh
4 Propertv Madifications ¥
Export Update Document
4 o Picture I Fibres @ do/dy do/dz w TXY Txz oN oMy oMz 3»
Prandtl OK Cancel
Results
Beam Plate + % Finite Elements %
Rib Difference Difference
Maximal rotation Fix at the end 52.1 59.1 13.4% 55.4 6.3 %
[mrad]

The results show that the deviation is quite significant.
If torsion is important, it is advisable to switch to a Finite Elements model.
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Shear force deformation

The shear force deformation in a beam is charged automatically in SCIA Engineer. The shear area Az is
qualifying for the shear force deformation. This quantity is calculated accurately for the T-section.

With a rib, Az is calculated for the rectangular cross-section. When using the Mindlin element, the shear
force deformation of the plate is also taken along. The two separate calculations do not have the same result
as a T-section.

Shear force deformation only has an influence with high beams with short spans and here the influence
remains restricted. This deviation is in most cases of less importance.
Line support

A plate with ribs is supported by those ribs at the height of the internal edge that connects both parts.
However, the plate is supported over the width of the beam.

This distinction gives a difference in the moments in the plate in the direction perpendicular to the rib. This
should be considered with ribs that have a large width or with ribs that consist of a reversed U cross-section
(as with a tubular bridge).

Example: 10_04_Tubular bridge.esa
Model

In this example, the tubular bridge is modeled. The different elements have a thickness of 22 mm and are
made from concrete C25/30 according to EC. The bridge deck has a length of 20 m, a width of 5 m and is
supported by 3 ribs with a height of 1 m and a width of 1m. The bridge is simply supported at both sides. On
the bridge deck, a uniform distributed load of 50 kN/m2 is applied.

The whole is calculated with an average mesh size of 0.25 m. The results are visualized in nodes, avg. on
macro in two sections in the middle of the bridge.

Results

35.76
30.00
25.00
20.00
15.00
10.00
5.00
0.00
-5.00
-10.00
-15.00
-20.00
-25.00
-30.00
-35.00
-42.14

my [kNn/m]

Finite Elements | Plate + Ribs | % Difference
Maximal bending Uz in the longitudinal 35.1 39.5 12.5%
direction [mm]
Maximal longitudinal moment mx in the 20.0 24.5 22.5 %
plate [KNm/m]
Maximal shear moment my in the plate 13,3 24.5 84.2 %
[KNm/m]

In the Finite Elements model the supports are attached to the bridge deck at the correct position. With the
model with ribs, the connection line is situated between rib and plate in the middle of the U-section, which
does not correspond to the reality.

The results clearly show that the bridge deck is better supported by the Finite Elements model, with lower
shear moments as a result. In the model with ribs, the headway of the supports is much bigger with bigger
shear moment as a result.
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Chapter 11: Orthotropy

Theory

In a 3D model, the following components of deformations appear in each point (respectively the
deformations according to the x-, y- and z-axes):

u(x, y, z)
v(X, Y, 2)
w(x, y, )
From these deformations, the following strains can be calculated:

€= [Ex, €y, €z, Exy, &Exz, 8yz]T

ex = du/dx
gy = dv/dy
g, = dw/dz

€xy = 1/2 yxy = 1/2 (dv/dx + du/dy)
&xz = 1/2 yxz = 1/2 (du/dz + dw/dx)
€z = 1/2 yy, = 1/2 (dw/dy + dv/dz)
The stresses in each point are:
O = [Ox, Oy, Oz, Oxy, Oxz, Oyz]"
The stresses and strains are related to each other, in the simplest case this relation is linear (Hooke’s law):
o=Dc¢

D is a 6x6 matrix. The connection between stresses and strains is not based on assumptions, but describes
the real physical behavior of the material. For that reason, this matrix is called the “constitutive” matrix.

With the reduction to a 2D plate, the stresses are replaced by internal forces s. These internal forces s are
known as the results of SCIA Engineer:

S =[Sm', Sb"]
Sm = [nx, Ny, Qxy]T for membrane forces
Sb = [mx, My, Mxy, g, qy]" for bending

The components of the deformations that are used with a 2D plate are the deformation of the axis of the
plate, the rotation on the x-axis and the rotation on the y-axis:

w(x, y) = w(x, y, 0)
(X, y)
o(x, Y)

With the Kirchhoff element, the normal on the plate axis remains perpendicular to the plate axis.
So, there is a double connection between w and ¢:

@ = -dw/dx
@ = dw/dy
With the Mindlin element the shear force deformations yxz and vz also occur:
@ = -dw/dx + yxz
O = dw/dy + Wz
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?f o Py yE E%"ﬂ}w

¥
'qu% +i,

From these 3 components of the deformation the strain can be calculated in each point of the plate (with the
usual assumption that an even cross-section remains plane). From this strain, the stress can be calculated in
each point of the plate by means of the constitutive matrix. Through integration of these stresses over the
thickness of the plate, the internal forces that belong to the deformation can be calculated (for the full
calculation, you can refer to ref. [2]).

This gives the following connection for the membrane forces and deformations in the plane:

n dll d12 d13 3

n, |=(d, d,, dy O e

y

Ay di; dp dy Vi

For bending components and deformations from the plane:

'm ] [D, D, D, 0 0] | %
m, D, Dy Dy 00 2
my |=| D3 Dy Ds O 0|0 (4 )
a, 0 0 D,, D, Vo
a, | 0 O D,s Dss | Vi

The Caracter * means the derivative to x, while « means the derivative toy. ¢'y en -¢°x are curves.
In most textbooks, the shear force deformation is neglected. Then:
¢'y = -d?w/dx? = curve Kxx
-¢°x = -d?w/dy? = curve Kyy
¢y - ¢'x = -d?w/dxdy -d>w/dxdy = -2 d?w/dxdy = curve 2 Kxy
The matrix for the bending effects is subsequently written as:

m, D, Dy, Dy Ky
m, |=|Dy, D, Dy«

yy

m,, Dis Dy Dy |2«

xy

By dividing the membrane force components and the bending components, it is implicitly assumed that these
components do not mutually influence each other.

These stiffness matrixes do not only describe the physical behavior of the material, but also the stiffness of a
plate element. This is specified by the material, possibly different materials over the thickness (reinforced
concrete, laminated plates) and by the geometry (ribs, ...).
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In SCIA Engineer the following components are entered in this matrix:
d11, d22, dsz and d 12

D11, D22, D33, Das, Dss, D12

D44 and Dss are added because Mindlin elements with shear force deformations are used. In many cases
there are no simple formulas to calculate these stiffnesses.

The orthotropic parameters can be calculated by means of following formulas:

for plate elements :
__ B
Dll T A1 . 1
(121v,, W,,))
___EO
2 (12(11, )
Dl2 = D21 = l/21[[D 11= 4 l;ID 2

G,
D33 =—2
12
G13 * h
Pu="13
G23 * h
T 12

G13 and Gzs3 are used for the calculation of the stiffnesses Das4 and Dss. These are the stiffnesses for shear
force deformation. In some cases, they cannot be calculated exactly. In that case it is advised to enter Das
and Dss much larger (1000 times larger) than the other stiffnesses.

In this way, you will neglect the shear force deformation. The influence of the shear force deformation is
restricted with normal plate thicknesses/stresses.

The best method to have a better approach for Gis and Gzs is to calculate them with following formulas:

G13 = L
2L+ vy,)

E
Gy = 2
2[(A+vy)

for “wall” elements:

__EM

C|11 T N
(1_ Vio DJ’21)

=t
(1_ Vio m/21)

d33 = Gl2 th

d12 = le: V21Ijj ll: v 12|]j 2%

Shell elements have both characteristics of a plate element as from a “wall” element. That way all physical
constants, as described above, need to be applied.

A real example is the use of floor plates that wear out in only one direction. With this, you can use orthotropic
parameters. In the two directions, several stiffnesses need to be applied, to which you can attribute a quasi-
neglected stiffness to the shear direction.

Another method to model this real example can be done as follows: you reduce the measurements of the
plate a bit so they just fail to hit the non-supporting beams. What's more, you attribute a Poisson coefficient
of 0 to the plate material.

A plate that is respectively torn and not torn in the X and the Y direction can also be modeled as a plate with
orthotropic parameters. This way a different E-module can be applied in both directions.
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Orthotropic parameters: isotropic plate
The stiffness of an isotropic plate is entirely defined by the following parameters:

E (modulus of elasticity), v (Poisson coefficient) and h (thickness)
For the membrane effects in an isotropic plate, the following formulas are applied:

o, =E(g, +ve,)/L-Vv?)

o, =E(g, +ve,)/(1-v?)

Ty =Gy

By integration over the thickness, nx, ny en gxy are obtained in function of &, €y and yxy, and so di1, d22, ds3
and di2:

d, =d,,=Eh/1-v?), d,; =Gh,
dlZZlel’ d13:d23:0'
For bending:
Dy, = D,, =Eh® /(12-12v2), D43 =Gh® /12,
D44 =Dss =Gh/B, Dy, =v Dy,
Di3=Dy3=Dys =0
For a constant course of the shear stress 1xz , Tyz over the height h, then B = 1. From the analogy with a

rectangular cross-section follows the assumption that from a parabolic stress course, we get coefficient 3 =
1,2.

Example: 11_01_Isotropic.esa

In this example, the stiffness parameters are calculated for an isotropic plate. These stiffnesses are applied
as an orthotropy on another identical plate, and the results are compared between the isotropic and
orthotropic plate

Project data
a
[07070707070760 7076 07076 0707407074 016 0 010 0 0 10 0 0]
Length: a =10m
Thickness: h = 400mm
Distributed load: g = -10 kN/m?
Concrete: C25/30 according to EC
a
E = 31500 N/mm?
v=0,2

Reference

S.P. Timoshenko and S. Wotnowsky-Krieger, Theory of Plates and Shells, 2" edition, Mc Graw Hill, New
York, 1987.
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Calculation of Stiffness parameters

D11 = D2z = E h3/ (12 (1-v2)) = 31500 x 4003 / (12 x (1 — 0.22)) = 1.75 E+11 Nmm = 175 MNm

D12 = D21 =v D11 = ... =35 MNm

D3z =Eh3/(24 (1+v)) =... =70 MNm
G=E/(2(1+v)) =...=13125 MPa
Das=Dss=Gh/1.2=...=4375 MN/m
Model

The plate is simply supported on four sides and calculated with an average element size of 1 m without
averaging strips on the edges.

Results

2.403
2.200
2.000
1.800
1.600
1.400
1.200
1.000
0.800
0.600
0.400
0.200
0.000

Utotal [mm]

The results are claimed in nodes, avg. for a section in the middle of the plate.

Isotropic Orthotropic % Difference
Deformation Uz [mm] | -2.403 -2.403 0.00 %
Moment mx [KNm/m] 45.20 45.19 0.02 %

Conclusion

The behaviour of both plates is identical, which proves that the stiffnesses are correctly calculated for an
isotropic plate.
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Orthotropic parameters: Practical cases

In the literature, there are numerous examples available for the calculation of these coefficients in practical
cases. In this paragraph, a few specific cases are explained. For more information see ref. [1].

Example: 11_02_Floorwithribsa.esa and 11_02_Floorwi  thribsb.esa

In this example, a floor with ribs is modelled. The plate has a thickness of 200 mm and dimensions of 10 m
by 6 m. In the longitudinal direction, the plate is stiffened with ribs of 400 mm height and 200 mm width.

The headway of the ribs is 2 m. The whole is made of concrete C25/30 according to EC. The floor is loaded
with a consistent distributed load of 5 kN/mz2.

Project data
h :I Fy
H
do 0 U0 U -+
-~ t
X
¥ ¥
h =200 mm t =200 mm
al =2000 mm H =600 mm

Calculation of stiffness parameters

E*ad*h? _G* Az
= - D,, =
124al-t +a°*t) al
G*h
D = E*| D, =
y al 1,2
D, =0
L C
DXY_DXY+2*al
E*h®
Yo 121+v)
With

D, =torsional stiffness of the plate without rib

Az = shear area. T-section with width al
C = torsional stiffness one rib = G * |
a=h/H
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To calculate I, Az and It exactly, a Finite Elements calculation is performed of such a T-section with element
size of 5 mm.

B Cross-section <
4 Property Modifications A
Edit shear and torsion proper
Use property multipliers
4 Property
A[mm*2] 4.8000e+05
Ay [mm?2] 3.8047e+05
Az [mm*2] 1.6707e+05
AL [m*2/m] 5.2000e+00
i L AD [mA2/m] 5.2000e+00
#36.720 YUCS [mm] 1000
W05 ZUCS [mm] 450
+25.218 afdeg] 0.00
+19.466 ly [mm?4] 8.4000e+09
+13.715 1z [mm*4] 1.3360e+11
+7.964 iy [mm] 132
221 iz [mm)] 528
.-3 539 Wely [mm*3] 1.8667e+07
[~ = -9.290 Welz [mm?3] 1.3360e+08
% -15.041 Wply [mmA3] 0.0000e+00
- —J -20.792 Wplz [mm*3] 0.0000e+00
N .726 544 Mply+ [Nmm] 0.00
| o Mply- [Nmm] 0.00
J# Y .,38 046 Mplz+ [Nmm] 0.00
Mplz- [Nmm] 0.00
dy [mm] 0
dz[mm] 42
It [mm*4] 6.3229e+09
Iw [mmA6] 4.4472e+14
By [mm] 487
Bz[mm] O
Export Update Document
@ Picture [l Fibres ¢ do/dy dpldz w Ttxy Tx@ OoN oMy oMz 3
dF/dz oK Cancel
From this follows: ly = 8400000000 mm* Material: C25/30
Az = 165280 mm?2 => E = 31500 N/mm?2
It = 6322900000 mm* v=0,2
C=G*l=8,2988 el3 Nmm? G = 13125 N/mm?

The formulae can now be filled in. According to the figure, the Y-axis lies in the longitudinal direction of the
ribs. The ribs are entered in SCIA Engineer according to the X-axis. Specifically, this means that the formula
for Dy matches in this case with D11.

31500 * 8400000000
Dy =Dy = 2000

=, 305002000 20033 \ = 2250000000NmmM = 225MNm
12(2000- 200+ (200/ 600 * 200

=132,2 MNm

D,,=D

D,, = D1=0MNmM; in SCIA ENGINEER a very small value is entered.

_ 30500 200 N 78678&"

= =36613980226Nmm= 366IMNm
¥ 121+02)  2*2000 . 6

D,;=D

_1270833* 169930_ N/ - MN
W ey =107976B4N/ =107976MN/
_1270833* 200 _ N/ - MN
Dy === = 21180556 N/ = 211806MN/
Model

The floor with ribs is entered is SCIA Engineer in two ways: as orthotropic plate (Floorwithribsa) and as a
plate with ribs (Floorwithribsb). The whole is calculated with the average element size of 0.25 m without

averaging strips.
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Results

Maximal displacement Uz in a section in the middle of the plate:

Orthotropic plate: -4.946 mm
Plate with ribs: -4.952 mm

Moment Mx in a section in the middle of an orthotropic plate, claimed in nodes, averaging :

Mx = 62,51 KNm/m, over a cooperative width of 2m gives this: 125.02 kNm

Moment My in the middle rib of the plate with ribs:

My = 122.90 kNm

Conclusion

The moment Mx in the orthotropic plate is close to the moment My in the middle rib of the plate with ribs, and
the displacement is very similar in both examples.

The results show that the orthotropic parameters describe the behaviour of this stiffened plate well.
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Example: 11_03_Grid.esa

In this example, a grid is modeled. The frame consists of steel IPE 200 profiles and has dimensions of 14 m
by 14 m. The headway between the beam amounts to 1 m in both directions. The whole is made of S235
according to EC and is loaded with a surface load of 1 kN/m2.

Project Data
Fy Ll
a = 14000 mm
al =1000 mm
b b = 14000 mm
hl b1l =1000 mm
v
v
¥ al
Calculation of stiffness parameters
D :ﬁ
X bl
D = Ez* I2
y al
D, =0
_1G .G
Y o4\p al
with:
E1 = E2 = 210000 N/mm?2
l1 =12 = 19430000 mm#
Ci1=C2=G * It =5637692254 Nmm?2
G =80769,23 N/mm?2
It =69800 mm*
From this follows:
D,=D, = 210006 19430000: 408030000MMmM = 4,0803VINmM
100C
D,, = Dy = 210006 19430000: 408030000MIMmM = 4,0803VINmM
100(
D, = y :E(80769,2869800+ 80769,286980Cj — 281884G5NMM= 0,00281MNm
4 1000 1000

D,, = D1=0MNmMm; in SCIA Engineer a very small value is entered for this.

For D44 and D55 no formulae are shown, so large values of this can be entered to neglect the effect of the
shear force deformation.
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Model

The grid is entered in SCIA Engineer in two ways: as an orthotropic plate and as a real grid. The whole is
calculated with the average element size of 1 m without averaging strips.

Results

Uz

Maximal deflection Uz in a section in the middle of the orthotropic plate: -77.651 mm.

Deflection Uz in the middle of beam B8: -77.042mm.

Moments

Moment Mx in a section in the middle of the orthotropic plate, claimed in nodes, avg.: 15.05 kKNm/m.

Moment My in the middle of beam B8: 15.05 kNm.
Conclusion

Also here the results show that the behavior of grid is very good approachable through a 2D element with
orthotropic properties.
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gineer

In SCIA Engineer there are different standard Types of orthotropy implemented.

Standard

[

B ' Orthotropy

& IEFE «2» D RO A
|@oT1 Name OT1

Type of orthotropy Standard

Thickness of Plate/Wall, h [mm

Material

D11 [MNm]

D22 [MNm]

D12 [MNm]

Two_heights

Slab with ribs
Grid work
Masonry

One direction slab

Cross-laminated timber

X
vy

A

D33 [MNm]
D44 [MN/m] 2.1875e+03

BITIUUETUY

This is the standard case of orthotropy where you have access to all available orthotropy parameters.

You must input all parameters yourself: D11, D22, D12, D33, D44, D55, d11, d22, d12 and d33.

Name OT1
Type of orthotropy Standard
Thickness of Plate/Wall, h [mm] 200
Material €25/30

D11 [MNm] 2.1875e+01

D22 [MNm] 2.1875e+01

D12 [MNm] 4.3750e+00

D33 [MNm] 8.7500e+00

D44 [MN/m] 2.1875e+03

D55 [MN/m] 2.1875e+03

d11 [MN/m] 6.5625e+03

d22 [MN/m] 6.5625e+03

d12 [MN/m] 1.3125e+03

d33 [MN/m] 2.6250e+03

v

AT

When you change the “Thickness of the Plate/Wall” or the “Material”, then values are inserted in the
orthotropy parameters D11, D22, ... These are the values for a standard isotropic plate with this thickness

and this material.

Bl = E;.h*

17 92.(4-vy.vy)
E,.k*

D,; =

12( . | - Vi - "21)

Dip;=Dy = vi3- Dy =vy -
Gy W

D, = 12

Dy = 6._,)11;1‘2

Pu=%u-hj12 )

TC —2023/09/11

. Ey.h

M =va . va)
Dy,

2 is E,.h

- T(1-wy.vy)

dy; = Gy h

Gi; = G = Vi G =V

91



Advanced Concept Training — FEM Analysis

Two heights

Simulation of a slab with a different thickness in local x and local y direction.

/— in-situ poured Iaffr
/
h1 £ 2 £ A

\ I I' I
[ FAY X l \ FLT 4\ |

_ prefabricated desk

You have to input the effective heights and reduction coefficients:
Name OT1

Type of orthotropy Two_heights
Material C25/30
4 Flexure
Effective height, h1 (x) [mm] 200
Effective height, h2 (y) [mm] 200
Torsion stiffness coeff 1

Shear form factor 1.2

D11 [MNm] 2.1875e+01

D22 [MNm] 2.1875e+01

D12 [MNm] 4.3750e+00

D33 [MNm] 8.7500e+00

D44 [MN/m] 2.1875e+03

D55 [MN/m] 2.1875e+03

4 Membrane
Effective height, hx [mm] 100
Effective height, hy [mm] 100
Shear stiffness coeff 1
Material C12/15

d11[MN/m] 2.8229e+03

d22 [MN/m] 2.8229e+03

d12 [MN/m] 5.6458e+02

d33 [MN/m] 1.1292e+03
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All orthotropic parameters are calculated:
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E.R3
Dy =——"—3
12.(1 —v2)

E.h3
Dy =775
12.(1 —v?)

Di; =v.4/D11.Dy;
(1 —=v).y/Dy1. Dz
1-
2

D35 = Yr
G.hy
D44— - ﬁ
G.h,
D55 - B
With

* Y1 = torsion reduction coeff.
« [ = shear reduction coeff.

L _Eh
11 — (1—V2)
E.h
_ Yy
b2 = T2

diz = Vv.\/d11.dy;
(1 - V).r\/ dll' dzz
2

ds3 = Yr2-

With:
*  Yy2 = shear reduction coeff.

Value B = 1.2 (for rectangular sections); also value 1.0 can be used.

Value yn: when setting this value to zero, then you get a ‘torsion weak’ plate, thus avoiding the lifting of the
corner nodes. To get a numerically stable solution, use small values (0.05) instead of zero.

Value ys: when setting this value to zero, then you get a ‘shear weak’ wall, thus avoiding horizontal (shear)
stiffening of the construction. To get a numerically stable solution, use small values (0.05) instead of zero.
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One direction slab

Simulation of a slab which carries it's load mainly in one direction:

h /_,-—- ﬁ-sim thin poured layer

|
[1010]0L0} {100} 02 Or |
¢

: L "hollow core plate®

al

The rigidity in the main direction is calculated based upon the properties of a user defined cross-section. You
have to define the cross-section (CSS) of these unidirectional prefab elements and then use this CSS to
define the orthotropy.

Besides the CSS, you have to input the height of the topping h and the distance between the elements al:
Name OT1
Type of orthotropy One direction slab v

4 Flexure
CSS CS1-Rectangle (500;30 v ...
CSS spacing, a1l [mm] 1000
Material C12/15 e
Height of slab, h [mm] 200
D11 [MNm] 9.8437e+01
D22 [MNm] 1.8067e+01
D12 [MNm] 0.0000e+00
D33 [MNm] 8.3855e+00
D44 [MN/m)] 1.6406e+03
D55 [MN/m] 1.8819e+03
4 Membrane
Effective height, hx [mm] 100
Effective height, hy [mm] 100
Material C12/15 7 o
d11[MN/m] 2.8229e+03
d22 [MN/m] 2.8229e+03
d12 [MN/m] 5.6458e+02
d33 [MN/m] 1.1292e+03
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All orthotropic parameters are calculated:
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E;. 1
D11— 1-11
aq
D E,.h3
D, =0
(Gl.ltl) 4 (Gz.h3)
a, 3
D33 = 3
G1.Az4
Dy, =
44 a;
.h
2
Dec =
W)

Ey.h,

dy, = 2%

11 (1 _ Vz)
Ey.h,

d22 - (1 _ VZ)

diz = Vv.\/d11.dy;
(1 - V). r\/ dll' dzz
2

dsz =

TC —2023/09/11
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Slab with ribs — rib inputted by the user

Simulation of a slab with ribs in one direction:

11:I &
w1 i
al

- t

-

it

L

You have to input the rib dimensions, rib spacing and slab height:
Name OT1
Type of orthotropy Slab withribs
4 Flexure
4 Rib
Rib Input
Material, Rib C12/15
Rib thickness, t [mm] 300
Rib height, H- h [mm] 500
Rib spacing, a1 [m] 0.500
4 Slab
Material C12/15
Slab height, h [mm] 150
D11 [MNm] 4.6324e+02
D22 [MNm] 1.8710e+01
D12 [MNm] 0.0000e+00
D33 [MNm] 5.9579e+01
D44 [MN/m] 3.8781e+03
D55 [MN/m] 1.4115e+03
4 Membrane
Effective height, hx [mm] 100
Effective height, hy [mm] 150
Material C12/15
d11 [MN/m] 2.8229e+03
d22 [MN/m] 4.2344e+03
d12 [MN/m] 0.0000e+00
d33 [MN/m] 1.3829e+03
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All orthotropic parameters are calculated:
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5 _EI

11 — al

D = E.al.h3

22 h3
12.{(a1 - ) +( (5) -t

D12=0

Do = E.h3 +G.1t

¥ 7 12.(14+v)  2.al
_G.AZ

44 — al

b _G.h

55_1'

With

o E: Young modulus of the material
o | : moment of inertia of a T section of width a1
o0 Az : Effective surface for shear of a T section of width a1
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Slab with ribs — rib selected from the cross-sectio n library

Simulation of a slab with ribs in one direction:

1 :I &
H

a1
css %’\
. “¥h,
.
x E %:r
L -

A t
You have to select the rib from the library and input the rib spacing and slab height:

-

it

vy

Name OT1
Type of orthotropy Slab with ribs v
4 Flexure
4 Rib
Rib CSSLib v

Cross Section CS1-Rectangle (500; v ...
Rib spacing, a1 [m] 0.500
4 Slab
Material C12/15 e
Slab height, h [mm] 150
D11 [MNm] 5.0472e+02
D22 [MNm] 7.6219e+00
D12 [MNm] 0.0000e+00
D33 [MNm] 3.1012e+01
D44 [MN/m] 3.2813e+03
D55 [MN/m] 1.4115e+03
4 Membrane
Effective height, hx [mm] 100
Effective height, hy [mm] 150
Material C12/15
d11 [MN/m] 2.8229e+03
d22 [MN/m)] 4.2344e+03
d12 [MN/m] 0.0000e+00
d33 [MN/m] 1.3829e+03
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All orthotropic parameters are calculated:

If E1 > E2 des = Ey. hy
11 = 77 o
1—v?
D.. = EZ- Iy,css + EZ- Iy,slab ( )
1 a, do = E,.h,
22 = 71 o
1—v?
If E1 < E2 ( )
di, =0
D.. = El- Iy,css + El- Iy,slab 12
11 =
al d _ (1 _V).\/dll.dzz
33 =
E,. h3 2
22~ 717
D, =0
W Dy11.Dy;
33T T o
D G1.Az4
44 = a
P h
W)
With
* index 1 - Cross-section properties
* index 2 - Slab properties
* lyess — Moment of inertia of the cross-section with regards to the center of gravity of the equivalent
T section
* lysiab — Moment of inertia of the slab with regards to the center of gravity of the equivalent T
section
» following properties are taken from Cross-section and Material:
0o E modulus E;
o Effective surface for shear Azx
0 G modulus Gi
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Grid work — ribs inputted by the user

Simulation of a slab with ribs in local x- and local y-direction:

»
L |
H

al

% a2

You have to input the rib dimensions, rib spacing and slab height:

Name OT1
Type of orthotropy Grid work
4 Flexure
Beam Input
4 beam,1
Materiall C12/15
Width of beam, t1 [mm] 300
Depth of beam, h1 [mm] 450
Beam spacing, a1l [m] 0.500
4 beam,2
Material2 C12/15
Width of beam, t2 [mm] 300
Depth of beam, h2 [mm] 450
Beam spacing, a2 [m] 0.500
D11 [MNm] 1.2347e+02
D22 [MNm] 1.2347e+02
D12 [MNm] 0.0000e+00
D33 [MNm] 2.6840e+01
D44 [MN/m] 2.5406e+03
D55 [MN/m] 2.5406e+03
4 Membrane
Effective height, hx [mm] 100
Effective height, hy [mm] 100
Material C12/15
d11 [MN/m] 2.8229e+03
d22 [MN/m] 2.8229e+03
d12 [MN/m] 0.0000e+00
d33[MN/m] 1.4115e+03

100

e
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All orthotropic parameters are calculated:

Chapter 11: Orthotropy

E.. L
D11 -
a;
E,. I,
22 — a
2
D, =0
(6‘1 Itl) (Gz Itz)
a;
D33 - 4
_ G.Az1
44 a,
G,.Az2
55 =

1

E,.h,
dll ( Vz)
E,.h
yry
d22 (1 _ vz)
don = (1—v).ydy1.dy;
33 —
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Grid work — ribs selected from the cross-section li brary

Simulation of a slab with ribs in local x and local y direction:

al

- a2

You have to select the ribs from the library and input the rib spacings and slab height:

Name OT1
Type of orthotropy Grid work v
4 Flexure
Beam CSSLib v
4 beam,1

Cross Section CS1 -Rectangle (500; v ...
Beam spacing, a1 [m] 0.500
4 beam,2
Cross Section CS1 -Rectangle (500; v ...
Beam spacing, a2 [m] 0.500
D11 [MNm] 1.9687e+02
D22 [MNm] 1.9687e+02
D12 [MNm] 0.0000e+00
D33 [MNm] 3.6973e+01
D44 [MN/m] 3.2813e+03
D55 [MN/m] 3.2813e+03
4 Membrane
Effective height, hx [mm] 100
Effective height, hy [mm] 100
Material C12/15 2 e
d11[MN/m] 2.8229e+03
d22 [MN/m)] 2.8229e+03
d12 [MN/m] 0.0000e+00
d33 [MN/m] 1.4115e+03
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All orthotropic parameters are calculated:

Chapter 11: Orthotropy

o E modulus E;

Moment of inertia li

Torsion moment of inertia It;
Effective surface for shear Az;
G modulus Gi

O oO0Ooo

E.. L E, h,
D = e —
11 b1 dqq D)
Ep.1 E,.h
D22 =— dyy = =2
a -9
D;; =0 diy; =0
D _( b1l )+( al ) d _(1_V)-Vd11-d22
33 = 2 33 = >
D G.Az1
44 b1
_ G.Az2
55 = "1
With:

» following properties are taken from Cross-section and Material:
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Masonry

This orthotropy type is used as a simulation of a masonry wall.
The orthotropic behaviour "Masonry" is basically the same as orthotropic behaviour “Standard”

The difference is in the new parameter "Coeff. off reduction for arching effect". Parameter "d33" of standard
orthotropy is multiplied with this coefficient.
Name OT1
Type of orthotropy Masonry v
Thickness of Plate/Wall, h [mm] 200
Material Masonry \ A

I Coeff. of reduction for arching effect 0.01 I
D11 [MNm)] 2.2044e+00
D22 [MNm] 2.2044e+00
D12 [MNm] 5.5111e-01
D33 [MNm] 8.2667e-01
D44 [MN/m] 2.0667e+02
D55 [MN/m] 2.0667e+02
d11[MN/m] 6.6133e+02
d22 [MN/m] 6.6133e+02
d12 [MN/m] 1.6533e+02
d33 [MN/m] 2.4800e+00
4 Torsion stiffnesses for Prefab ...
Kxy [MN/m] 1.0000e+00
Kyx [MN/m] 1.0000e+00

By this coefficient, it is easy to reduce arching effect in masonry wall. Default value is set on 0,01. Range can
be <1; 0,0001 >.

V /[ [ [

This type of orthotropy is automatically set when "Masonry Wall" is used in the project.

A smaller value for the shear stiffness reducing coefficient means a smaller horizontal load carrying capacity
of the wall.
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Cross-Laminated timber

The orthotropy type "Cross Laminated Timber" is used for 2D structures made out of timber in which the
stiffness is calculated based on the composition of the different cross laminated timber layers.

You have to select the number of layers, their thickness and the width of the lamella in directions x and y:
Name OT1

Type of orthotropy Cross-laminated timber v
Material CL24 (TableN.1 prEN19¢v ...
Total number of layers 5 v
4 Torsion reduction coefficient
Method acc. to ONORMB 1995-1-1 ( v
Torsion reduction coefficientk_tors [-] 0.588
4 Shear stiffness (in-plane) coefficient
Method acc. to ONORMB 1995-1-1 ( v
Shear stiffness coefficient k_shear [-] 0.675
4 Direction 0° (x-direction)
Lamella width a_x [mm] 80
System coefficient k_sys, x [-] 1.200
Shear correction coefficient method Calculate v
Shear correction coefficientk_0,z [-] 5.157
Transverse expansion coefficientv_x,y [-] 0.000
4 Thickness of layers
Layer 1 [mm] 20
Layer 2 [mm] 20
Layer 3[mm] 20
4 Direction 90° (y-direction)
Lamella width a_y [mm] 80
System coefficient k_sys, y [-] 1.200
Shear correction coefficient method Calculate v
Shear correction coefficientk_90,z [-] 6.572
Transverse expansion coefficientv_y,x [-] 0.000
4 Thickness of layers
Layer 1,2 [mm] 20
Layer 2,3 [mm] 20
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Flexural orthotropy

Flexural stiffness in direction x, [MNm/m] (1)

EO,mean X ID,net,z
Dy = ————

(1 Xvy)
Flexural stiffness in direction y, [MNm/m] (2)

D . EO,mctm X IO.m:t.y
(v xvyz)

Transverse contraction x, — y, [MNm/m] (3)

D12 = \/V:z:,y X Vyaz X Dy X Dy
Torsion stiffness related to (x,y), [MNm/m] (4)

bxd®
D33 = ktors X GO,mean X 12

Shear flexural stiffness in direction x, [MN/m] (5)

1
D44 - K X (GO,mean X AO,net,z + GQO,mean. X AO,n.et,y)

Wz

Shear flexural stiffness in direction y, [MN/m]  (6)

1
D55 - Fo0e X (GO,mean X AO,net,y + GQO,mean X AO,net,z)

»

Membrane orthotropy

Normal membrane stiffness in direction x, [MN/m] (7)
dll = EO,-me(m X AO,net,z:

Normal membrane stiffness in direction y, [MN/m] (8)
dz2 = Eomean X Aonety

Transversal contraction x,—yp, [MN/m] (9)

dia = vy X dyy

Shear membrane stiffness related to (x,y), [MN/m] (10)

d33 - kshear X GO,mean X Agroas

Notes:

* In the Wall model the membrane stiffnesses (4 parameters) play the role of the flexural ones in the
Plate model. The most general Shell model defines both parameter sets simultaneously (in total 10
orthotropy parameters).

e Itis important to emphasize that within the solver settings the Mindlin bending theory should be
used in combination with Cross-laminated orthotropy.
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Symbols in formulae (1) — (10)

b

Unit width of the CLT-panel (=1meter).

d

Total thickness of the CLT-panel.

EO,mean

Mean value of modulus of elasticity (Young's Modulus) along the grain of the timber laminate.

GO,mean

Mean value of shear modulus along the grain of the timber laminate.

IO,net,x

Second moment of area along the grain for the x-direction.

I0,net,y

Second moment of area along the grain for the y-direction.

Vxy

Coefficient of transverse expansion, a value of 0 is a good approximation coefficient.

Vy,x

Coefficient of transverse expansion, a value of 0 is a good approximation coefficient.

ktO rs

Torsion reduction coefficient, a value of 0.65 is a good approximation coefficient.

l‘(shear

Shear stiffness coefficient, a value of 0.75 is a good approximation coefficient.

ko2

Shear correction coefficient (input range 1.20<=kq ,<=6.67) for the x-direction

Koo,z

Shear correction coefficient (input range 1.20<=kq ,<=6.67) for the y-direction

Ao,net,x

Net area of the CLT-panel in the x-direction.

Ao,net,y

Net area of the CLT-panel in the y-direction.

Agross

Gross area of the CLT-panel (Ag;oss=b"d)

Torsion reduction coefficient Kiors

The torsion reduction coefficient is used for determining the torsion stiffness D33. According to the research
done by Silly, 2010 a value of 0.80 is recommended for CLT-panels without any cracks. Considering cracks
a value of 0.65 is recommended. The coefficient can also be calculated according to ONORM B 1995-1-1
(NA.K.2) in which the following equation is used:

With

_ Ggtay
- 2

Ktors = :
ors —
1+0><pr(“’"_‘“)'10

@

, With ax and ay the individual lamination widths for the given direction

dmax: Thickness of the thickest individual layer

| 3 layers || 5 layers || 7+ layers |
Po | o8 || o067 || o055 |
| do | 133 || 126 | 123 ]

Shear stiffness coefficient Kshear

The shear stiffness coefficient which is used for determining the shear membrane stiffness d33. According to
Silly (2010) when stressing a plate, the shear stiffness of cross-laminated timber must be reduced compared
to homogeneous materials. A value of 0.75 is a good approximation for the shear stiffness coefficient.

d33 = Gs,mean * Ayross ~ kghear * GO,‘mean * Agross

The coefficient can also be calculated according to ONORM B 1995-1-1 (NA.K.1) in which the following

equation is used:
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With:
Gy +ay
, With ax and ay the individual lamination widths for the given direction

a —=

dmax: Thickness of the thickest individual layer

| 3layers || 5, 7+layers |
| ps [ o053 | 043 ]
| ds | 1.21 |

Shear correction coefficients ko.z and koo .z
The shear correction coefficients ko and keoz are used to properly take into account shear deformations
within the Reissner-Mindlin model. These shear correction coefficients have been investigated by Jobstl for
CLT-elements in Schickhofer et al., 2010. Within that paper multiple CLT-panels with constant thickness
were tested and the outcome is summarized by means of shear correction factors kappa:

1

Ko =
0~ .
K9p = ——
%0 kso,z
M
0,28
o} 7s
.-_O..‘ ............. 7s ana'yuSCh
026 Pv—o eesssne 2505 7S
A ~
3 S
%] R O 5s
E ...I..%.¢I..I..9;‘:;v.'.?@
c 024 | 0.245 —U 3 - = = = S5sanalytisch
.2 ~Cho
‘g. s.._L___‘“"a,DD - = 250 55
e 0.231 o 3
Q 22 N m]
o Y N al _
; 3s analytisch
L
= 25% 3s
“ 0,2
r \
_—
0.196
Xto
0,18 t
0,375 0425 0475 0,525 0575 0625 0,675 0,725 0,775 0,825 t

Thickness ratio

valid for Gy /G = 690/65 = 10,6

In tabular form the following recommended values for kappa are [Cross-Laminated Timber Structural Design

Volume 2, pro:Holz, 2018]:

| 1 layer

|| 2 layers

|| 5 layers

|| 7 layers || 9 layers

(25% quantities)

Shear correction coefficient

0.833

0.196

0.231

0.245 0.250

Keep in mind that the above table describes the kappa-values which is the shear correction factor, while the
orthotropy dialog expects the shear correction coefficients as input which is 1/kappa.

The shear correction coefficient can also be calculated automatically, in the background the CLT-panel is taken
as a cross-section with 1 m width. Afterwards its shear area Az is calculated per direction. Finally the shear
correction factor kappa is obtained as the ratio between the shear area and the total area from which the shear
correction coefficient can be derived as 1/kappa.
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hapter 12: Property modifiers

In order to use property modifiers, this functionality should be activated in the project settings.

Project data X
Basicdata Functionality Actions UnitSet Protection
GENERAL DETAILED
4 Dynamics &
Model modifiers |54 Modal & harmonic analysis
Parametricinput Seismic spectral analysis
Climatic loads Dynamic time-history analysis
Mobile loads 4 Nonlinearity
Dynamics Beam local nonlinearity
Stability Support nonlinearity/basic soil spr
Nonlinearity Initial imperfections
Structural model Geometrical nonlinearity
IFC properties General plasticity
Prestressing Compression-only 2D members
Bridge design Cables
Excel checks Friction support/Soil spring
Membrane elements
4 Subsoil
Soil interaction
Pad foundation check ¥
OK Cancel

Property modifiers are used to change the stiffnesses of both 1D and/or 2D elements.

They exist as additional data that can be inputted on 1D and/or 2D members.

Example: 12_01_Property modifiers.esa

INPUT PANEL & structure v
= Boundary conditions v 0 All tags v
= 1D property modifiers i 2D property modifiers
©» Hinge at the beginning of beam © Hinge at the end of beam

©-0 Hinges at both ends of beam

wa

=  2DPROPERTYMODIFIER(1) (N
Stiffness factors  SF2D1 Vo=

Selfweight factor  1.000

Mass factor  1.000

2D member
B Stiffness factors 2D X
B EIRFE a2 0 @B A v Y
SF2D1 Name SF2D1 e
Description
Type Percentage of stiffness v
Axial stiffness [%] 50
Bending stiffness [%] 50
Correction factor for D11 0.500
Correction factor for D12 0.500 v
New | Insert | Edit = Delete OK

The advantage of property modifiers is that they are easy to apply and it is easy to understand how it works.
A lot of practical applications can be considered.

For example, the calculation of a concrete member that is assumed to be cracked.

By using property modifiers here, you can keep on performing a linear calculation.

In this way, a more complex PNL (physical nonlinear) or CDD (code dependent deflection) analysis is
avoided.
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Chapter 13: Compression-only 2D members

When using pressure 2D elements, the functionality Nonlinearity and Compression-only 2D members
must be activated in the project settings.

Project aata

Basicdata Functionality Actions UnitSet Protection

GENERAL DETAILED

Property modifiers 4 Nonlinearity A

B Model modifiers Beam local nonlinearity

Parametric input Support nonlinearity/basic soil spr

Climatic loads Initial imperfections

Mobile loads Geometrical nonlinearity

Dynamics General plasticif
ability Compression-only 2D members
| )
Structural model Friction support/Soil spring
IFC properties Membrane elements
Prestressing 4 Subsoil
Bridge design Soil interaction
Excel checks Pad foundation check
4 Steel

Plastic hinge analysis

Fire resistance checks
Steel connections S

OK Cancel

With this option, tension in 2D elements can be automatically eliminated. This is mostly used for masonry
elements. In below some examples to clarify this option.

Example: 13 01 Pressure onlyl.esa
This project illustrates the use of compression_only 2D elements.
Model

In this project two 2D-elements are modelled. The first one is modelled as an isotropic element, the second
one is a pressure only element:

- [
| 2D MEMBER (1) A ] 2D MEMBER (1) N
- - .
. [sl#/elclgla 5|~ [e|c|g(a
' ' Name S1 | Name S2
Layer Layerl v/ s= Layer Layerl v/ o=
Elementtype Standard A Elementtype Standard v
Element behaviour 2 1 v Element behaviour Standard v
Type plate (90) v Type plate (90) v
Shape Shape
Material C30/37 v/ o= Material C30/37 / o=
FEM model Isotropic v FEM model Isotropic v
FEM nonlinear m... none v FEM nonlinearm... Pressonly v
Thickness type constant v Thickness type constant v
Thickness Th. [mm] 200 I Thickness Th. [nm] 200 I

When calculating those elements, for every mesh element a certain orthotropy will be inserted. At the first
iteration step, all the pressure only elements will be calculated as isotropic elements. After the first
calculation, another stiffness will be inserted on all the elements in tension, so a certain orthotropy will be
inserted. With this stiffness, the tension capacity of this element will decrease. After adapting the orthotropic
parameters, a new calculation will be performed. After this second iteration step, again the elements in
tension will get another stiffness. This process will be repeated until an equilibrium is reached.
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Results

The difference between the isotropic and orthotropic elements can be clearly viewed looking at the principal
normal force nl for these members, which are obtained in centres and for nonlinear combination NC1.:

8 g 8 8 -
g g 8 8 scai £
T ; T i 4
80.00 z

60.00

/ Y vy v v w000

[ 20.00

0.00

‘= = i

20.00

-40.00 —

¥ , -60.00

-80.00

w
-98.74

The results n1 show the ‘biggest’ principal normal force (since nl1 > n2). So, it is clear now that the right
element only gets compression forces.

Looking at the trajectories (by checking “trajectories” in the 2D internal forces menu) of this normal force, the
trajectory of the pressure force will be even more visible:

Trajectories for nl
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»
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n2 [kN/m]

-535.49
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Also for the beam above the opening, there is a difference for the moment My:

—100.00

[IRNRNRNNA
o g

5.21 kNm
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Example: 13_02_PressureOnly2.esa

When looking at the pressure diagonals in a reinforced 2D concrete element, ribs can be used to simulate
reinforcement.

Model

In this example, a plate with a bearing support is inserted with two ribs acting as the reinforcement of the
element:

Results

Looking at the results of this 2D element, the pressure diagonals inside this element are clearly visible:
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