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Introduction

Introduction

All discussed topics are available in the Concept Edition of SCIA Engineer, unless it is explicitely
mentionned for a certain specific topic.

As an introduction, some basic rules for good use of fem software are given:

« Do not start too complex. It is better to draw up a coarse model first and to refine it afterwards. From
the coarse model a number of primary conclusions can be already drawn to simplify the rest of the
course of the modelling.

* In many cases the Finite Element mesh is too coarse in a specific detail area to obtain exact results.
Instead of trying to refine the mesh in such an area, it is mostly advisable to draw up a submodel of
the detail.

« Drawing up a submodel is based on the St. Venant principle that indicates that if the real force
distribution is replaced by a static equivalent system, the stress distribution is only influenced in the
direct environment of the point of application of the forces. Specifically this means that if the edges of
the submodel are removed far enough of the stress concentrations that you want to examine, the
submodel gives reliable results.

» Restrict the structure type to the necessary. It is not always necessary to model a 3D structure. A 2D
environment can provide just as good results in a quicker and simpler way. Especially the restriction
of the number of degrees of freedom can lead to fewer problems with the calculation.

» If possible, use symmetry to restrict the calculation model in size.

« Always apply/test new functionalities, special techniques to a small project and apply it only
afterwards on the real complex project.

« Always calculate the structure after modelling, loaded with the self weight. The other loads can only
be imported when no problems were encountered.

« Always consider the compliances of the construction as a whole with an instability/singularity. If the
degrees of freedom are obstructed for the entire structure according to the construction type, only
then take a look at the members.

»  After calculation:
0 Checking the reaction forces
o Checking if the moment diagram progresses as expected
o Checking if the structure is deformed as expected

« If possible, always perform a coarse/short manual calculation to verify the order of magnitude of the
results.
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Mesh generation

Mesh settings

Under Calculation, Mesh - Mesh setup , or under Setup = Mesh, the mesh can be configured. The
mesh settings here will be applied on the entire project, unless local mesh refinements are applied.

The most important mesh settings are indicated with the red box.

L L

. E— -
B Mesh setup M]

MName

= General mesh settings

Minimal distance between two points [m] 0,001

Average number of tiles of 1d element 1 I
Byerage size of 2d element/curved element [m] 0,250

Definition of mesh elerent size for panels Autornatic b
Average size of panel element [m] 1,000

Elastic mesh W

Use automatic mesh refinement
= 1D elements
Minimal length of beam element [m] 0,100

Maxirnal length of beam element [m] 100,000
Average size of cables, tendons, elements on subsail, nenlinear soil spring [m]
Generation of nodes in connections of beam elements

Generation of nodes under concentrated loads on beam elements

Generation of eccentric elements on members with variable height

Division on haunches and arbitrary members

Division for 201D upgrade

Mesh refinement following the beam type

=l 2D elements

To generate predefined mesh

To smeoth the border of predefined mesh

Mazximal out of plane angle of a quadrilateral [rmrad]

Predefined mesh ratio

Hanging nodes for prestressing

i ipCip]




Mesh generation

General mesh settings

Minimal distance between
two points [m]

If the distance between two mesh nodes is lower than the value specified
here, the two points are automatically merged into one single point. This
option applies for both 1D and 2D elements.

Average number of tiles 1D
element

If necessary, more than one finite element may be generated on a single
beam. The value here specifies how many finite elements should be
created on the beam.

This value is only taken into account if the original beam is longer than
the adjusted Minimal length of beam element and shorter than the
adjusted

Average size of 2D
element/curved element [m]

The average size of the edge for 2D elements. The size, defined here,
may be changed through refining the mesh in specified points.

This option also defines the magnitude of finite elements generated on
curved beams.

Definition of mesh element
size for panels

This applies only to load panels.

If the load transfer method for load panels is set to Accurate (FEM) , then
a FEM analysis is performed to define the load transfer. By this setting
the mesh size of such load panels can be defined.

Average size of panel

This applies only to load panels.

element [m] This option is only used when to option above is set to Manual .
Defines the average size of mesh elements for load panels.
Elastic mesh If this option is activated, then the mesh generator will assume that the

segments of the mesh are elastic . This allows further maintenance of
numerical stability in case of strong mesh refinements.

Use automatic mesh
refinement

Only available if Elastic mesh is activated

The mesh will automatically be refined based on a certain load case. The
refinement happens on mesh generation after calculation  (so only after
generating the mesh after the linear calculation has already been done)
until the target error is achieved.

Target error for mesh
refinement [%]

Only available if Use automatic mesh refinement is activated

When an already calculated project is meshed again, the mesh will be
refined on certain positions until the target error is achieved.

Load case for mesh
refinement

Only available if Use automatic mesh refinement is activated

Automatic mesh refinements are done based on this load case. On the
positions where peak results appear, the mesh will be refined.

Hanging nodes

This applies only to post-tensioned cables

Post-tensioned tendons will be calculated by placing at the real position
of the tendons. The nodes are ‘hanging’ at a distance from the model.
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1D elements

Minimal length of beam
element [m]

When a beam of the structure is shorter than the value here specified,
then the beam is no longer divided into multiple finite elements even
though the parameter above (Average number of tiles of 1D element)
says so.

Maximal length of beam
element [m]

If a beam of the structure is longer than the value specified here, then the
beam will be divided into multiple finite elements so the condition of
maximal length is satisfied.

Average size of cables,
tendons, elements on
subsaoil, nonlinear soil spring
[m]

To obtain correct results, it is necessary to generate a much finer mesh
on cables, tendons (prestressed concrete) and beams on subsoil.

Generation of nodes in
connections of beam
elements

If this option is ON, a check for "touching" beams is performed. If an end
node of one beam "touches" another beam in a point where there is no
node, then the two beams are connected by a FE node.

If the option is OFF, such a situation remains unsolved and the beams
are not connected to each other.

The function has the same effect as performing the function Check of
data.

Generation of nodes under
concentrated loads on beam
elements

If this option is ON, finite elements nodes are generated in points where
the concentrated load is acting. This option is normally not required.

Generation of eccentric
elements on members with
variable height

This specifies the number of finite elements generated on a haunch. This
option prescribes the precision of the modelling. The larger the number,
the better the model approaches the reality .

Division on haunches and
arbitrary members.

Finite elements will always receive a constant height, rigidity and cross-
section. So haunches and arbitrary members must be divided into
different finite elements according to this number.

Division for 2D-1D upgrade

When performing the 2D-1D upgrade , this mesh setting will be used.

Mesh refinement following
the beam type

This specifies if the nodal refinements should also be applied on beam
members. The nodal refinement is represented by a volumetric element,
namely a sphere. As a consequent, the mesh of all the structure elements
situated in this sphere will be refined taking the following possibilities into
account:

None
The refinement is applied to 2D members only.

Beams and columns
The refinement is applied to elements which have the type beam or
columns, or a type of beam or column, but not to ribs for example.

All 1D members
The mesh refinement is applied to all 1D members.
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2D elements

To generate predefined
mesh

If this option is ON, the mesh generator first tries to generate a regular
quadrilateral finite element meshi n every slab complying with the
adjusted element-size parameters. Only if required, additional needed
nodes are added to the mesh.

If this option is OFF, the finite element mesh nodes are first generated
along the edges and further, the mesh is generated to the middle of the
plate.

Generally, the first option is faster, gives less 2D mesh elements and has
a regular mesh in the middle of the plate. At the transition to an inclined
edge the elements can be less optimal. The parameter ratio predefined
mesh determines the distance (in relation to the element size) between
the predefined mesh and the edges.

To smooth the border of
predefined mesh

If this option is ON, the border elements of the predefined mesh are
included into the process of smoothening, i.e. the mesh area consisting of
regular quadrilaterals can be increased.

Maximal out of plane angle of
a quadrilateral element
[mrad]

This value determines whether a spatial quadrilateral element whose
nodes are not in one plane will be replaced by triangular elements. This
parameter is only meaningful for out-of-plane surfaces — shells. The
assessed angle is measured between the plane made of three nodes of
the quadrilateral and the remaining node of this quadrilateral.

Predefined mesh ratio

Defines the relative distance between the predefined mesh formed by
regular quadrilateral elements and the nearest edge. The edge may
consist of an internal edge, external edge or border of refined area. The
final distance is calculated as a multiple of the defined ratio and adjusted
average element size

for 2D elements.
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Mesh size 2D elements

The correct mesh size is a vague concept. A finer mesh gives better results in general, but in case of
singularities or peak values, a finer mesh makes these peaks much worse.

In SCIA Engineer, the results on plates are by default already post-processed. This means that you

see results that are a bit brushed up.

Model

The mesh size will be evaluated for the project Mesh_Size _2D.esa.

The project start with a mesh size of 1m for the 2D elements.

T . ==

MName £A f

= General mesh settings

Minimal distance between two points [m] 0,001

Average number of tiles of 1d element 1
l Average size of 2d element/curved element [m] 1,000 1 =

Definition of mesh element size for panels Manual >

Average size of panel element [m] 1,000

Elastic mesh v

Use automatic mesh refinement T

=l 1N afamantc

The loads in the project consist of only the self weight.

Results

The linear calculation is performed. When looking at the internal forces on the 2D element, the
following results can be shown (under Results 2 2D members - internal forces - mx)
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\Ex [kNm/m]

25.00
20.00

15.00
10.00
5.00
0.00
-5.00
-10.00
-15.00
-20.00
-25.00
-30.00
-35.00

-40.00

-45.00

-50.00
As mentioned before, these results are post-processed
results. The post-processing configuration can be seen in Properties X
the property ‘location’ . 2D member - Internal forces (1) | - | \JE V

. . . & &
There are 4 choices for ‘location’ : More details can be

found in annex 2 2D member - Internal...

Selection All -
1. Incentres Type of loads Load cases -
This option will show the results averaged per finite Load cases BGL -
element. The result will look like a mosaic. Filter Mo -
2. In nodes, no avg. System Local .
Rotation [deg] 0,00
This option gives the unchanged results, which originate | averaging of peak
directly from the solver. These can be called the ‘pure’ Location In nodes, avg. on mz| *
results. Type forces In centres
3. Innodes, avg. Standard [ nodes. no g
This option will taken a parabolic average of results in Section In nodes, avg. on macro
each mesh node. This will make give a more fluid Edge
representation when showing the results. Trajectories
Values mx -
4. Innodes, avg. on macro Etreme Global =

This option does the same as the option above, as long
as the finite elements come from the same plate, wall or
shell. Unlike the previous option, this one will not
average results from a plate and wall for example.

Drawing setup 2D

It is clear that the results of the option ‘In nodes, no avg . must be investigated.
We use a fixed palette so to have a better comparison of results.

Ijx [kNm/m]

25.00

20.00
15.00
10.00
5.00
0.00
-5.00
-10.00
-15.00
-20.00
-25.00
-30.00
-35.00
-40.00
-45.00

-50.00

The results are not alike, which means that the post-processing has quite a big impact on the
representation of results. This indicates that the mesh is not fine enough.
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Solution

A rule of thumb for concrete plates is to take a mesh size equal to 1 or 2 times the thickness of the
plate. In this project that would be 1 or 2 times 0,2m for the wall, and 0,3 for the plate. Let’s take a
mesh size of 0,25m.

The unprocessed results now look like this:

\Ex [kNm/m]

25.00

20.00
15.00
10.00
5.00
n.00
-5.00
-10.00
-15.00
-20.00
-25.00
-30.00

-35.00
-40.00
-45.00
-50.00

Iﬂx [kNm/m]

25.00
20.00
15.00
10.00
5.00
0.00
-5.00
-10.00
-15.00
-20.00
-25.00
-30.00
-35.00

e Y 40,00
B 4500

-53.58

The results with or without post-processing have a very similar presentation of results. This indicates
that the mesh is fine enough.

If necessary, it is also possible to use local mesh refinements. These can be found in the main menu
under “Calculation, mesh - local mesh refinement .

Local mesh refinement X

----- ﬁ- Mode mesh refinement

----- ‘J.%'k_ 2D member edge mesh refinement

------ BH Surface mesh refinement
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Elastic mesh

In the project “Mesh_Elastic.esa” we are going to show the effect of using an elastic mesh.

Model

The model has the dimensions shown in the image below.

Steel 5235

Plate thickness: 25mm
Height stiffener: 200mm
Height column: 1000mm

1000
o
S
=
N
Bolts M32
100 100 600 100 100
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Results

First the mesh is generated without the elastic mesh. This can be set in the mesh settings:

" = -

7 5
B Mesh setup ﬁ

MName E=

=l General mesh settings

Minimal distance between two peints [m)] 0,001

Average number of tiles of 1d element 1

HAverage size of 2d element/curved element [m] 1,000 =
Definition of mesh element size for panels Manual =
Average size of panel element [m] 1,000

T

El 1D elements

Minimal length of beam element [m] 0,100
Maximal length of beam element [m] 1000,000
Average size of cables, tendons, elements on subsoil, nonlinear soil spring [m] 1,000
Generation of nodes in connections of beam elements W
Generation of nodes under concentrated loads on beam elements [

Generation of eccentric elements on members with variable height

@ oK || Cancel

e

The global mesh setting is 0,2m.

The mesh can be generated by using Calculation, Mesh - Mesh generation , or in ‘Project’ toolbar

with the icon:

The mesh can be displayed by the view parameters. These can in the graphical display bar under Set

]
view parameters for all Structure > Mesh > Draw  mesh.

The elastic mesh in the mesh setup provides a fluent transition between mesh sizes.

Elastic mesh on (default setting): Elastic mesh off :
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Automatic mesh refinement

SCIA Engineer 14 offers a new feature - Automatic mesh refinement. A fine mesh of finite elements
produces more accurate results than a coarse mesh. But to find the correct fine mesh is sometimes a very
hard task for a user. Therefore, we are releasing this new method for automatic mesh refinement. This
method has been developed in collaboration with our partners — FEM consulting s.r.o and Czech Technical
University in Prague. Our solution reflects state of the art error estimation methods. The benefit of the
method is also that now information is given about the quality of results due to the used mesh density of two-
dimensional mesh elements.

Model

The model Mesh_Automatic.esa is composed of a ground and top, separated by multiple columns.

Results

As indicated in the example about mesh refinements, the mesh can be judged by going to a 2D result,
and setting the ‘Location’ to ‘In nodes, no avg.’. In the image below, the moment mx has been asked

for the self weight.
mx [kNm/m]

27.09
20.00
16.00
12.00
8.00
400
-0.00
-4.00
-8.00
-12.00
-16.00
-20.00
-24.00
-28.00
-32.00
-36.36

The mesh is certainly not good enough. You can see that there are incoherent results and peak values near
the columns.
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Solution

Now we will perform an automatic mesh refinement based on the results for the self weight.
To perform the automatic mesh refinement, the next steps are required.

1. Activate the automatic mesh refinement.
a. Go to the mesh settings.
b. Activate both elastic mesh and automatic mesh refinement.

c. Choose the load case and the target error for the mesh refinement.

Mame MeshSetupl £
[ General mesh setiings
Minimal distance between two points [m] 0,001
Average number of tiles of 1d element p
Average size of 2d element/curved element [m] 1,000 E
Definition of mesh element size for panels Automatic 22
Average size of panel element [m] 1,000

Elastic mesh
Use automatic mesh refinement
Target error for mesh refinement [3] 10

Load case for mesh refinement LC1 - self weight 0| o

2. Perform the linear calculation. You will also receive information about the error estimation for the load
case configured in the previous step.

& Linear calculation:

" - Maximal translation -13.139 mm,
in node 175 [0,000,5,000,3.600] (loadcase LCL)
- Maximal rotation -3.197 mrad,
in node 179 [0.000,1.000,3.600] (loadcase LC1)

Sum of loads and reactions is OK

l Quality of numerical solution due to 2D FE size 31.90% l

3. If desired, you can check the numerical error by going to the results menu and by checking “Num. Error,
Mesh refinement” for the 2D elements.

Wima3] -
105.58

100.00
80.00
50.00
40.00

20.00 mlﬂ Utslgll gluups

= Calculation, mesh

Check structure data

g Connect members/nodes

----- ¥ Mesh setup

----- J¥ Solver setup

----- 1B} Local mesh refinement

4. To perform the automatic mesh refinement, you must manually click on the ME) Mesh generation
mesh generation. This option can be found under Calculation, mesh . Calculation

----- E= Hidden calculation

¥ Autodesign

5. Now perform the linear calculation again. The estimated error will have | i 18} 2D data viewer

reduced, since the mesh has been refined. bl Results

110N PSRRI DR U S

Linear calculation:

- Maximal translation -14.205 mm,

in node 908 [0.000,5.000,3.600] (loadcasze LC1)
- Maximal rotation -3.234 mrad,

in node 922 [0.000,0.750,3.600] (loadcase LCL)

Sum of loads and reactions is OK

lQuaIity of numerical solution due to 2D FE size 20.46% ]
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6. To go even further in the mesh refinement, run through steps 4 and 5 until the desired result is
achieved.

After just 1 mesh refinement, the mesh is now locally refined.

To improve the results, we advise to also add averaging strips. This is treated in the chapter about
singularities.
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Singularities and peak values

1D elements are modeled as frames. The elements are represented by lines which are linked together
in nodes.

2D elements are modeled as surfaces. The elements are represented by planes which are linked
together over the edges.

If a 1D member is connected to a 2D member in a single node, this can introduce problems.
The 2D element will not be able to transfer all forces from the 1D element in just the node. This is what
we call a singularity.

- Peak results will appear in the 2D element.

- The connecting node will seem to be partly hinged.

Nodal support - Averaging strips

In most cases, a column or pole is introduced as a nodal support. The real dimensions of the support
are neglected. In the Finite Element Method this is a singular node and the bending moment above this
support is theoretically infinite. The moment will also converge to this infinite value with increasing
mesh refinement.

Refining of the mesh does not lead to the desired results in this case since the moment does not
converge to the real value. A possible solution is to use averaging strips.

Model

A square slab is inputted with dimensions 2m x 2m in the model Singularities_AveragingStrips.esa.
The mesh size is set to 0,25m and a surface load of 5kN/m? is inserted.

Results

After the calculation, the following results for mx 5 b | mx [kNm/m]

in nodes not averaged are obtained: \ 108

I 0.60

It is clear that peak values occur due to the A 222

reaction force of the nodal support. T 030

-0.60

This peak value is correct and converges to the -

theoretical value infinity by increasing the mesh e

refinement. 180

-2.10

/ \‘ -2.40

-2.78




Singularities and peak values

Solution
An averaging strip will be added to take care of the peaks due to the ”RS‘(’H“ Sl V'”‘;
reduced connection size of the analytical model. —~
I!_ RS1
An averaging strip was inputted in the Y-direction with “Direction” 20 member =
set to “Perpendicular” and a width of “1m”: g ] Lo
Direction perpendicular ~
= Point 1
= GCs
Coord X [m] 1,000
Coord ¥ [m] 0,500
Coord Z[m] 0,000
= Lcs
2 Ceordx[m] 1,000
Ceord y [m] 0,500
Ceord z[m] 0,000
= Point 2
B 6Cs
Coord X [m] 1,000
Coord ¥ [m] 1,500
1 Coord 7 [m] 0,000
B Lcs
Caoord x[m] 1,000
| Coordy [m] 1,500
TL Coord z[m] 0,000
——

Now the result of mx (in nodes, not averaged) with the averaging strip become:

Properties 3 x

2D clement Inteme krocheen ) [SINIRTANG —y | M [kNm/m] -
& & \ / 1.05

Mame ‘ 2D element - Interne krachten 0.0

Selection All - 0.60

Type of loads Load cases - 0.40

Load cases BGL ~

Filter No - \ | 0.20

System Local - | 0.00

Rotation [deq 0,00 i | | 030

e —

Location In nodes, no avg. - ( -0.40

Type forces Basic magnitudes A I -0.60

Standard 7 080

Section [ —

Edge F -1.00

Trajectories F -1.20

Values x - 140

Extreme Global ~ Ed

Drawing setup 2D -1.60

By looking at the numerical results, a manual verification can be made. First we look at the averaged
results.
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-028
-0.41 | —0.58 —1,60 | —1.59 —0.60 | -0.29 0.57
-0.41 | —0.88 —1.80 | —1.59 —0.60 | -0 28
—0.41 | 088 -160 | —1.59 080 | -0.28 072|078 083
=041 | -068 -1.60 | 1.5 -0.60 [ -0 28 087 | 070 0B85
-0.41 | 088 —160 | —159 —0&0 | 028 086|085 099
058 058 -0.41 | —0.68 —1.60 | —1.59 —0.60 | -0.29 085|087 108
-0.41 | ~0.88 =180 | 1.5 -0.60 | -0.26 073|073 080
0.54 —0.41 | 088 - 160 | —159 080 | -0.28 077|083 L00
-041 | —0.68 -1.80 | -1.39 060 [ -0 20 0.54 .85
-0.41 | —0.58 —1.80 | 158 —060 | -0.28 073 076
-0.74 -0 66
-1.38 ©53 | -0.66 081 | -0.57 -0.88 -0.66 -0.38 085 080 D.81
W -1.09  0B2 | -0.69 053 |-048 053 |-039 066 |-041 088 |-048 057 [ -047 -0.32

For the same X-coordinate, in each element the same value will be obtained. Looking at the results in
numbers without the averaging strip, the same value can be calculated taking the average of one line
with the same X-coordinate within the averaging strip.

* . ]
T 078 83
6,70 ) ES
G278 |-2.75 B r .86 | 085 b.49

| - ! | J
os8 2 %8 - =278 | =2.T6 =105 3 a7 A7 285 | 0.59 1.0%
3 020
a7 | o9 100
5 0.7

I

| a.n2 £ 1.58 .88 w6

'+:%: o - . _
The -1,60 from the previous page can be found as:

-0,41-133—-184—-2,78—-2,78—187 — 1,36 — 0,45 —12,82
8 )

=—1,6025
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This averaging strip was defined as “Perpendicular” and inputted in the Y-direction. Looking at mx
(perpendicular to the Y-direction) an average will be made.
When we look at my (parallel with the Y-direction) no average will be made:

Properties X
2D member - Internal forces (1) m AT
e = m [kNm/m]

1.05

MName 2D element - Interne krachten 060

Selection All ) 030

Type of loads Load cases - 0

Load cases BGL ) 030

Filter No = — -0.60

System Local - / \ \ -0.90

Rotation [deg] 0,00 -1.20

Averaging of peak & \ \ / / -1.50

Location In nodes, no avg. - ’; ?2

Type forces Basic magnitudes -

Sty:ndard v 2
-278

Section

Edge

Trajectaries

Values my -

Extreme Global -

Drawing setup 2D

When changing this average strip from perpendicular to longitudinal, an average will be made for my
but not anymore for mx.

\ |ﬂ [kNm/m]
\\ ‘ 1.05
0.80
0.60
Properties o x -
oM F“ MV E 0.20
F —_ 0.00

] !

—— -0.20
MName RSL /J o
20 member El g [ .
Type Strip -0.80
Width [m] 1,000 -1.00
Drecion —————— [PRRRE v o |
El Point 1 \ o

Note: The averaging algorithm uses only the finite elements that are located inside the averaging
strip.

This may cause certain inaccuracies especially in combination with larger finite elements.
Therefore, it is recommended to define internal edges along the averaging strips

This ensures that finite element nodes are generated along the edge of the averaging strip, which
may significantly improve the accuracy.

The recommended procedure is thus:

- Define the model of the structure

- Perform the calculation

- Review the results

- Define averaging strips

- Review the averaged results

- Decide the final location and number of averaging strips
- Define internal edges along the averaging strips

- Repeat the calculation to obtain the improved results
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Nodal support — Subregions

Instead of using averaging strips for plates supported by nodal supports or by columns, itis also a
possibility to calculate this moment correctly by introducing the column not as a nodal support but as a
flexible supported subregion. The dimensions of the subregion are the dimensions of the column. The
flexible support can be calculated out of the stiffness of the column. The results of such an approach
are compared to the results of a nodal support in the example below.

With an element mesh of half the dimension of the column, the model with a subregion gives a good
value of the occurring moment. The value is a little bit higher than the real occurring moment. An even
finer mesh gives unreal values. An element size equal to the dimension of the column is too coarse
and gives an underestimation of the real occurring moment.

Model

In this example (model Singularities_Subregions.esa ) a floor structure is analyzed. It is supported by
columns with a distance of 6 m. The plate has a thickness of 0,2 m and is made of concrete C25/30
according to the EC. The whole is charged with a surface load of 100 kN/mz2,

For the calculation one field of 6mx6m is considered. In the middle of this field a nodal support is
inserted to represent the column. At the edges the rotation of the plate is prevented in both directions
since the plate is stuck ‘on itself'.

In the first case the column is introduced by means of a nodal support. Secondly, the column is made
as a sub region supported by a flexible foundation. And in the last case, an averaging strip is used with
the dimensions of the column.

For the calculation of the stiffness a concrete column has been taken with a E-modulus of 32.000 MPa,
height 4m and cross-section 0,5m x 0,5m.

32000\
“E:W.ﬁﬁ:&*%ﬁow%

Results

The results show the greatest peak value when the nodal support is used without an averaging strip.
The moment is strongly reduced when a subregion has been used.




Singularities and peak values

The structure is calculated with Mindlin elements. The results are claimed in nodes, averaging.
The table below shows the maximal value of mx above the nodal support or the subregion.

Element size [m] Nodal support Elastic foundation Averaging strip
[KNm/m] [KNm/m] [KNm/m]

1 -840,21 -459,56 -767,07

0,5 -1077,77 -491,40 -932,79

0,25 -1316,08 -693,83 -1030,88

0,125 -1556,74 -722,04 -1065,97

0,0625 -1796,93 -723,16 -1076,01

This table can also be plotted to show the convergence.

r T T T T T $ 0
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-1200 Averaging strip [kNm/m]
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-1400

-1600

- -1800

-2000
Element size (m)

Conclusion

The buffering effect of the subsoil on the result is clearly noticeable.
From this, you can conclude that the subsoil will approach the reality most accurately.
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Rigid line supports

A frequently occurring misunderstanding is the fact that the user thinks that a simple plate supported
on 2 edges behaves as a beam. This is only the case without transverse contraction (if v = 0). With

normal values of the Poisson coefficient (v = 0,2 or v = 0,3) very high peaks of the reactions appear
near the angles.

Mesh refinement does not offer a good solution in this case and even increases the peak value.

This peak value is correct and converges to the theoretical value infinity by increasing the mesh
refinement. This can be explained as follows:

Consider the plate as different beams which lie next to each other. With v = 0,2, the bottom of the
beam becomes smaller, the top on the other hand becomes broader. The plate is going to bend in a
direction parallel to the supported edges, with the round side upwards (saddle forming: the plate
deforms in the bearing direction with the round side upwards). This bending is prevented by the line
supports.

In a continuous plate this will cause bending moments my in the transverse direction, approximately
with a size of 0,2 mx. If this moment my occurred along the entire width of the plate, the reaction would
be constant. However, the moment has to be zero on the free edges. So, it seems that an opposite
moment 0,2 mx exists on this edge, that which leads to great reactions in the corners. In other words:
at the end of the plate the saddle forming is not prevented anymore by the moments in the plate. The
plate wants to deform downwards at the end, which is prevented by the rigid supports. Because of this,
very large reactions appear.

Model

In the example Singularities_PlateBeam.esa , a plate of 3mx10m is calculated according to EC. The
material is made of concrete C25/30. The thickness of the plate amounts to 200 mm. The plate is
supported on the long edges and is loaded by a uniform load of 100 KN/m2.

Without the plate action a uniform line load of 150 kN/m is expected along each border.

Results

The plate is calculated with an increasingly finer mesh. The maximal reaction in the corner increases
more and more. The image below shows the result for a mesh size of 0,1m.
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Singularities and peak values

Solution

The peak in the reaction can be attributed to the infinite stiffness of the support. A realistic stiffness
reduces the peak value considerably.

Assume that the rigid supports should represent a concrete wall with E-modulus 32.000 MPa, a
thickness of 0,1m and a height of 4m. This wall would have a certain rigidity.

32000\ 100mm
-Et_ i =800/, =800MN/
h 4000mm mnv m

By assigning this rigidity to the line supports, the peak value disappears and no longer poses a
problem when refining the mesh.

k

Element size [m] max. reaction rigid | max. Reaction flexible | Reduction peak
support [kN/m] support [kN/m] value %
0,8 179,6: 175,2¢ 2,42 %
0,4 232,84 204,93 11,99 %
0,2 326,4¢ 225,1¢ 31,03 %
0,1 438,90 231,95 47,15 %
0,05 549,06 233,67 57,44 %

This last table can also be represented in a graphical representation.

Plate beam - effect flexible support

600

500 /

300 // —&— Rigid support
—#— Flexible support
S —— —a

IN
o
]

200

Maximal reaction [kN/m]

100

0,8 0,4 0,2 0,1 0,05

Element size [m]
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Connecting 1D and 2D members

If a 1D member is connected to a 2D member in a single node, this can introduce problems.
The 2D element will not be able to transfer all forces from the 1D element in just the node.

- Peak results will appear in the 2D element.

- The connecting node will seem to be partly hinged.

Example 1: Beams between walls

Model

When two walls are connected with a beam, this phenomenon can appear.

In the following example (“Singularities_1D_2D_Moment_Walls.esa "), two walls with a dimension of
4x4 m are connected with each other by means of a beam with a length of 4m. This member is loaded
in the middle through a point force of 10kN.

EZ

rr, 7,7, 7,7,7,. 7,7, 7,171,717

=TT, T, T, T T, T, T T, T,
!

Even though the beam is fixed on both walls, it seems that it has a moment of zero at the connections.
In other words, it looks like there are hinged connections. The beam seems to be hinged due to the fact
that plates do not have a moment m,, since torsion in the plane of a plate is always taken up by the
normal forces nx and ny.

E1 ' ' ' ' EZ

!

10,00 kMm é-ﬁfr




Singularities and peak values

Solution

The solution exists in having 1D members connected to both the node and the edge of the 2D
elements. These 1D members that do not really exist in reality are called ‘dummy members’. In this
example, the result would look like this:

I |
—F
e —
F—
—
]

But since you are adding elements, and thus rigidity to the model, you must be able to explain why
these elements are used.

In the finite element model, the beam is only connected in the node. But in reality, the entire cross-
section is cast and connected to the plate. So in reality, the beam is also connected to the wall over a
certain region (and not in a single node).

But as you can see in the image above, the dummy elements are much longer than the height of the
cross-section, so what is the effect of the length of the dummy element? The table below shows the
moments in the beam, as well as the rotation in the end nodes in function of the length of the dummy

element.
Length dummy-beam Field moment Mz Moment at the ends Mz Fiz
(m) (kNm) (KNm) (mrad)
0,0 10,00. -0,00 0,278
0,2 6,41 -3,59 0,078
0,4 6,20 -3,80 0,067
1,0 6,18 -3,82 0,065

As you can see, a length of 0,4m is sufficient.

The beam in our example has a cross-section height of 0,5m, which more than justifies the use of a

dummy element with a length of 0,4m to 0,5m.

The moment line in the beam is now very different:

I.7.7.7.7.7T.T.T.T.T.T.T

— 5,80 kNm
—1,80 kNm

=1.80 kMNm
— 3,80 kNm

=

j_,_‘

5,20 kMNm
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Example 2: Plate on a single column

When a structure exists of a plate with a column on top of it, the user has to pay extra attention to this when
there is a question of torsion.

If the plate is subject to forces or moments, which cause torsion, very large deformations may occur. The
thought behind it is the lack of a degree of freedom in SCIA Engineer, namely the rotation around the z-axis.
In other words, the moment m, cannot be claimed when asking for the internal forces of a 2D element. The
solution for this is the application of ‘dummy-members’ at the location of the connection between column and
plate.

This is clarified with the following example (“Singularities_1D_2D_Column_Plate.esa ).

Model

Columns with a dimension of 500x500mm and a length of 4m are attached to a plate of 4x4m with a
thickness of 500 mm.

As load case, two point forces of respectively —1 kN and 1 kN are applied on the edge nodes of the plate.
These forces are lying according to the global X-axis. In this way, the plate will be subjected to a rotation in
his own surface without any transformation of the geometry.

. F.G&\K\

Results

When the global deformation in the plate is examined, very large deformations seem to appear. This is
especially the case at the location of the edges. The displacement at the center is zero. This indicates very
clearly that the plate rotates around the connection with the column.



Singularities and peak values

U global [mm]
1480113603

1400000000

1200000.000

1000000000
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0.000
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—1.0:

This phenomenon can be ascribed to the fact that the plate has no rotational stiffness around the Z-axis.
‘Energyless’ deformation occurs, which means that the plate does not know any resistance against the
deformation ¢,.

Solution

Dummy elements

The top of the column must be connected to the plate with more than just a node. By applying small
horizontal beams over the top of the column, it is possible to connect the edges of the finite plate elements to
the top node of the column.

After applying these dummy elements over the top of the column, it is remarkable that this deformation will
be much smaller and nearly equal to the deformations of the plates on which the dummy-members are fixed.
This means that an infinite rigidity is ascribed to the connection plate-column. You can verify this by
comparing the deformation of this node in the plate with the deformation fix of the column:

Rotation Fiz i the plate

Rotation fix i the colummn

Applying two crossing dummy-members at the connections is a way to get a correct approach of the reality.
These are attached to the plate by means of internal edges. This way, the small beams will take the rotation
of the plate on themselves, so the plate has a stiffness around the Z-axis. In this case, the large
deformations at the edges will be gone.
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In the example, a variation of the length of the beams is applied to verify the influence on the deformations.
With this you receive the following results with a constant mesh of 0.25 m:

Length of gXxy max Fiz max Ux max
dummy [m] [KN/m] [mrad] [mm]

0,00 57,54 -0,330 24587,503
0,05 145,83 -0,145 0,412
0,10 38,08 -0,152 0,332
0,15 23,52 -0,151 0,313
0,20 13,21 -0,154 0,306
0,25 10,63 -0,154 0,303
0,35 6,12 -0,155 0,299
0,50 3,55 -0,156 0,297
0,75 1,80 -0,157 0,297
1,00 1,78 -0,157 0,297

Several conclusions can be drawn:

*  When applying members of a very short length , this will affect the rotation and deformation
sufficiently .

¢ Increasing the length of such a dummy-member will only have a small influence on the deformation
and rotation.

* The shear stress g, on the other hand, has a larger influence when increasing the length: the
larger the beams, the smaller the shear stress in the plate.

» The shear stress varies little when a length of approximately half the section of the column is taken

* When using a length of the same dimensions as the section of the column , plausible results can
be expected.

* The section of the beams has a significant influence on the shear stress: a greater section gives rise
to a smaller shear stress and reverse.

- Preparatory to an analysis, a width equal to the dimension of the column and a height equal
to the thickness of the plate can be considered.

Mesh size

Subsequently the size of the mesh is varied when using a constant length of the dummy-beams, namely
0,25 m. The following results can be summarized in a table:

Mesh gXxy max Fiz max Ux max

Size [m] [KN/m] [mrad] [mm]
1 3,79 -0,147 0,301
0,5 7,66 -0,149 0,301
0,25 10,63 -0,154 0,303
0,125 15,06 -0,164 0,304
0,1 14,44 -0,173 0,304
0,05 25.74 -0,193 0,305
0,025 39.60 -0,242 0,305

Also here following conclusions can be drawn:
e The deformation and rotation are only influenced with the size of the mesh to a limited extent.

e The shear stress has a larger influence: it increases as the size of the mesh decreases.
- Preparatory to an analysis, a mesh equal to the length of the beam or the double of the length can be taken, depending on the
thickness of the plate.

30



Eccentricity

Eccentric elements

Eccentric column

Model

In this chapter the effect of eccentricities is discussed. As an example, we have constructed a simple
frame in a frame XZ environment (“Eccentricity_column.esa ).

¢ The columns are 3m high.
¢ The beam is 4m long.
¢ All elements have a cross-section 300mm x 300mm (made of C25/30).

¢ Aline load of 5kN/m is applied on the beam.

4000 mm o

y RJ:angle (ELU: 300} a u
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3000 mm
Rectangle (3607 300)

.
L
Rectangle (300; 300)

X

An eccentricity can be introduced on 2 ways
¢ By changing the “Member system line at” option.

* By introducing a value for e, and/or e,.
It is not surprising that several possibilities have the same effect.
For example this example, we set “Member system-line at” “bottom”, which would be the same as
inputting e, = 150mm (height cross-section divided by 2).

So for this example:

Name Bl Name Bl

Type column (100) - Type column (100} -
Analysis model Standard i Analysis model Standard i
CrossSection C51 - Rectangle (300; 300) " CrossSection C51 - Rectangle (300; 300) .
Alpha 0 ) Alpha 0 -
|Member system-line at Bottom _ | T—— Member system-line at Centre -
e o — EECI i

LCS standard - LCS £ 150 -
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Results
When looking at the moment diagram, we can notice some odd results
* The results are non-symmetrical.
¢« The moment at the bottom of the left column is not zero, although the support is hinged.

« The moment at the top of the left column is not equal to the moment on the left of the beam.

£ £
g g
T T
=5,56 kNm \ - | [ B / 4,06 kNm
\ /
\ Ll /

]
5,94 kiNm {
S

) /

— L

When looking at the normal forces, there is nothing strange at all. Both columns take 10 kN
compression force of the line load of 5 kN/m over the 4m long beam.

-1,35kN

.

N
L ~7 -1000 kN _ -10,00 kN
Fi N

The increased moment on the left column is due to the eccentricity which has been applied.
The additional moment can be calculated as:
AM, = N * e, = —10kN * 0,15m = —1,5 kNm

This explains the moment of —5,56 KNm:
My, = My, gystemiine + N * e, = —4,06 kNm + (—10kN) * 0,15m = —4,06 kNm — 1,5 kNm = —5,56kNm



Eccentricity

Interpretation
Why do we add the extra moment?
* In SCIA Engineer, the results are always shown for the neutral axis of the element.

« The connections between elements, supports, etc are made in nodes, as required in a finite
element model. The nodes are always at the ends of the system lines.

e So if an eccentricity is applied, the neutral axis will no longer be the same as the system line.
The recalculation of internal forces from the system line towards the neutral axis is what causes the
jump in the moment line (from -4,06 KNm to -5,56 kNm).

This is also represented in the image below.

» The first column on the left is the same as you can see it in SCIA Engineer (the light blue
line is added, representing the neutral line).

e Butin fact, you should represent an eccentric element as if the eccentricity is applied by
small horizontal elements. This is represented in the middle image.

«  When you look at the internal forces of an element, these internal forces are always applied
to the neutral line of the specific element. In this case, it implies that the forces in the nodes
(coming from the beam and support) should be recalculated to the blue line. The
recalculation is added to the third image (on the right).

BEAM
€z
N =-10kN
© My = -4 06kNm-+{-10kN)*0,15m
= =-5,56 KNm
©
m e
j= o
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j 8
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o
N = -10kN
My = OkNm + (-10kN)0,15m
=-1,50 kNm
ez 0. 15m
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The same principle can also be shown by creating small stiff beams.
To do this, we have used a cross-section 3000x3000 (='very high stiffness’), which we have converted

to a numerical cross-section.

=5,56 KNm
-4,06 kNm -4,06 kNm

5,94 kNm ' g
' ' Fa

=5,56 kNm
4,06 kiNm

1,50 kNm



Eccentricity

Eccentric beam

Model

In this example the effect on normal forces due to eccentricities is discussed. As an example, we have
constructed a simple beam in a frame XZ environment (“Eccentricity_beam.esa ”).

* The beam is 6m long.

« All elements have a cross-section 500mm x 300mm (made of C25/30).

A line load of 10kN/m is applied on the beam.

The eccentricity is inputted with “member system-line at”: “bottom” (or e; = 150mm)

-10,00
-10,00

As you can see, the line load is inputted on the beam and follows the eccentricity of the beam.
The supports are in the nodes, which are positioned eccentrically from the neutral line of the beam.

Results
In the results, you might notice some results which you intuitively would not expect:
» Thereis a normal force (although only a line load perpendicular to the beam was applied).

* The begin and end moments are not zero, although the supports are hinged .

-90,00 kN
30,00 kN
vz W
-30,00 kN
-22,50 kNm

22,50 kNm
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Interpretation

First let’s run over the effect of bending without the eccentricity involved.
No eccentricity

The results in SCIA Engineer for this same case (without eccentricity) would be:

. No ecoentriciky
il i

-30,00 kN

S I B ey

45,00 kNm

« The top fibres are in compression due to the bending stress. So they also become shorter.
M, xz
OBending = yI =Exe

¢ Due to a line load of 10kN/m over a length of 6m, the maximal moment would be:

kN
g2 —10—=x(6m)*> _360kNm
My max = 3 = = 3 = —45kNm

8
You can see this corresponds perfectly with the result shown above.
The difference in sign is merely a difference in convention used by SCIA Engineer.

» Due to this moment, the bottom fibre is compressed and will become shorter.

¢ The bending stress is zero in the middle of the beam (= the neutral axis).

¢ The bottom fibres are in tension due to the bending stress. They would become longer.



Eccentricity

With eccentricity

Due to the eccentricity, the supports are at the position of the bottom fibres (in the circles in the next
image). These bottom fibres would normally become longer due to bending, but the supports do not
allow these displacements.

Load

Bending stress

As a result, the supports force the elongation at the bottom fibre to be zero by means of a reaction
force. This can also be seen in the results.

¢ The reaction force R, from the supports introduces a normal force in the beam.
This is a constant normal force of -90 kN over the beam.

« Due to this reaction force, there will be no elongation at the bottom fibre.
* And due to this reaction force at an eccentricity e,, the moment line is shifted.
AM = N e, = —90kN * 0,25m = —22,5kNm

This causes the moments at the begin points to be -22,5 kNm and the maximal moment to
be shifted up from 45kNm to 22,5kNm.

With eccentricity
X - -90,00 kN
30,00 kN
Wz w
-30,00 kN
-22,50 KNm

22,50 kNm
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Introduction

By means of the menu Structure > 2D element components> Rib  a plate can be stiffened with
members.

Arib is calculated as a beam with eccentricity with regard to the axis of the plate. The member
elements are connected to the plate at the height of the mesh nodes.

In a 3D General project, the rib can be placed below, in the middle or above the plate. A rib that lies
below or above the plate causes membrane forces in the plate. In SCIA Engineer a rib below a plate is
always shear resistant connected to the plate. The total rigidity is according to the rule of Steiner:

Rigidity beam + Rigidity plate + Surface beam x (axis-distance-beam-plate)2.

So it is important to realize that also in reality the beam and the plate have to be connected shear
resistant to each other. If it is about a prefab construction at which the plate is on the beam, then the
beam has to be placed in the middle of the plate in the calculation model.

The effective width of the rib is calculated implicitly by the behaviour of the finite elements under
membrane forces during the Finite Elements Calculation. In the following view of the membrane forces
nx in the longitudinal direction of the beam, the effective width is clearly noticeable.

The section of the rib can be shown graphically, in that way you can see if the effective widths overlap
each other or not. This can be done by means of view parameters, by using
‘Set view parameters for all > Structure > Draw cr  0ss-section’.




Ribs

Forces inrib

What is explained in the previous paragraph also counts for a member that is connected to a plate and
is aligned eccentrically by an Internal edge . The difference with a plate rib is that for a rib an Effective
Width can be inserted too.

The Effective Width was specifically implemented to follow the code concerning the calculation of the
theoretical reinforcement. Because when the option Rib is marked with the results,

a replacement T-section is used to calculate the results. The height of the T-section is determined by
the height of the beam + the height of the plate . The flange width of the T-section equals the
entered Effective Width.

The internal forces for the replacement T-beam are calculated as follows:

Left part Fight part
T the heart of the entire replacement T-section +T1
T1 the heart of the left part of the effective width +T2
T2 the heart of the right part of the effective width
T3 the heart of the original rib +T
z +T3
. 0

The coordinates of the hearts are used as lever arms in the Y and Z direction:

Leverarm Z1 =T1z-Tz Leverarm Y1 =T1ly - Ty
Leverarm Z2 = T2-Tz Leverarm Y2 = T2y Ty
Leverarm Z3=T3z-Tz Leverarm Y3 =T3y - Ty
Lever armZ = Tz-0z Lever arm Y = Ty Oy

- N =N beam + N plate, left + N plate, right

- Vy =Vybeam + Vy plate, left + Vy plate, right

- Vz=Vzbeam + Vz plate, left + Vz plate, right

- Mx = Mx beam + Mx plate, left + Mx plate, right

- My =My beam + My plate, left + My plate, right + N plate, left * (Lever arm Z1) + N plate, right
* (Lever arm Z2) + N beam * (Lever arm Z3)

- Mz =Mz beam + Mz plate, left + Mz plate, right + N plate, left * (Lever arm Y1) + N plate, right
* (Lever arm Y2) + N beam * (Lever arm Y3)

If the option Rib is activated when claiming the plate forces, the internal forces in the cooperating width
of the rib are equated with zero. This counts for the internal forces in the longitudinal direction of the
rib. The forces perpendicular to the rib remain unchanged.

These internal forces can be equated with zero for the reinforcement calculation because they are
taken into the reinforcement calculation of the rib. And so the whole plate-beam is replaced by a T-
beam.

However, note that when using several ribs below a plate element, the cooperating widths of this
cannot overlap each other. If this does happen, the values of the internal forces are charged double on
the spot of the overlapping parts.
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Model

In the project Rib_vs_T.esa a beam is calculated with a length of 10m and concrete quality C25/30
according to EC. The beam is supported at the extremities, loaded with a distributed load of 200kN/m

and has following section:

Z
B 1000

th 200 .

H 600<

The beam is modelled in 3 different ways:

- As member element

- As plate with a thickness of 200mm and with a rib of 200mm x 400mm below the plate

- Entirely with Finite Elements

Results

In the results you can see that the same bending moment is
achieved by using a rib and a plate when comparing to a beam with
a T-section. However, this result is achieved when the option ‘rib’ is

ticked on.
=17y Fib Platel i
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2499,85
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©2500,00

Properties

Internal forces on member (1)
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Name
Selection
Type of loads
Load cases
Filter

Structure

Interne krachten in staaf
Current

Load cases

LC1 - Belasting

No

Initial

Rib / Integration stnp

i |

Prefab slab bearmn
Values
System

Extreme

Drawing setup 1D

Section

If the option ‘Rib’ is ticked off, then the rib will show a very different result.
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Ribs

Solution

When the option ‘Rib’ is ticked on, it means that the internal forces of the rib and its effective width

must be combined. If the option ‘Rib’ is ticked off, only the stresses in the rib are combined to the
internal forces.

With the option rib OFF

Rib o \

With this option, the plates and the ribs will

be defined “separately”:

MODEL:

One plate on top and rectangular ribs in below.

With the option rib ON

| Fio B |

With this option, the beams will be calculated
as T-sections.
So only at the end a plate will be calculated:

MODEL:
T-ribs, with a plate at the end.

It is also possible to check how the internal forces of the rib and the plate are combined.

If the option Rib is off, then you will have the next internal forces in the rib.
These forces apply to the center of the rib, T3.

Left part Fight patt
Member 55 dx Case M Vz My
[m] L [kh] | [khim] 4Tl
Rib C51-RECT | 0,000 [LC1 16,46 665,04 -4,68 +T2
Rib C51-RECT | 5,000 [LC1 |6216,26( ©,00| 388,89
Rib C51-RECT | 10,000 |LC1 16,46 665,04 -4,68 £
z +T3
The internal forces in the plate can be found by a section on the
middle of the plate, over the width. Then the averaged results over ¥ 0

this section can be found.

Section | elem | Case mx my mxy X vy nx ny nxy
[kNm/m] | [kNm/m] |[kNm/m] | [kN/m] |[kN/m] | [kN/m] [[kN/m] |[kN/m]
SE2 246|LC1 246,10 1,65 0,00 0,00 0,00| -6215,98| 22,04 0,00

These results apply to the centre of T1 and T2 together.



Topic Training — Finite Element Method

To find the internal forces in the rib with effective width, these two tables must be combined.
Ny = Nyip+Npiare = (6216,26 kN) + (—6215,99 kN) = 0,27 kN
Vor = Variv + Vapiate = (0,00 kN) + (0,00 kN) = 0,00 kN
My = My yip + My piate + Ny * (21 = 27,,) + Npare * (27 — 2T 1ate)

As you can see, in the calculation of the combined moment, we take into account the centre of gravity
of the entire T section to take into account the normal forces in the plate and the beam. The
recalculated forces are thus to be applied on a different centre of gravity then the centre of gravity of
the rib or the plate.

20y Arip + 21y, * Aptate (O4m/,) « 0,4m x 0,2m + (0,4m + 92/, 0,2m + 1,00m

o= Ariy + Aprare 0,4m * 0,2m + 0,2m * 1,00m
_0,016m® +0,100m® _ 0,116m’
©0,08m? +0,20m*  0,28m?

=0,414286m

Now that the height of the centre of gravity of the combined section is known, the combined moment
can be calculated.

My,T = My,rib + My,plate + Ny * (ZT - ZTT”,) + Nplate * (ZT - ZTplate)
= 388,89 kNm + 246,10 kNm + (6216,26 kN) * (0,414m — 0,200m) + (—6215,99 kN)
* (0,414m — 0,500m)
= 388,89 kNm + 246,10 kNm + (6216,26 kN) * (0,214m) + (—6215,99 kN) = (—0,086m)
= 634,99 kNm + 1332,056 kNm + 532,899 kNm
= 2499,845 kNm

When we ask for the internal forces in the rib, with the option rib activated, the same results are shown.

Internal forces on member || Name Interne krachten in staaf
Linear calculation, Extreme : Global, System : Principal, Rib / Integration s Selection Current
Selection : Rib0 Type of loads Load cases
Load cases : LC1 Load cases LC1 - Belasting
Member css dx |Case| N Vi My Filter No
[m] [kn] [kn] | [kNm]
Rib CS1- RECT 0,000 |LC1 -38,64| 992,56 1,79 Rib / Integration strip ¥
Rib C51-RECT 0,200 |LC1 3,39 948,72 155,53 rerab slab beam
: ccq DT BT tatall Wt L= Bidebs 2 oo Values More comp
I Rib CS1-RECT 5,000 LC1 0,27 0,00| 249985 N 2
Wy
Vz v
vl
Py Vv
Mz
Swstem Principal



Mindlin vs Kirchhoff

Mindlin versus Kirchhoff

Shear force deformation

For the bending behavior of plates, there are 2 types of bending theories implemented:
- The Mindlin element including shear force deformation

The Kirchhoff element without shear force deformation

With the Kirchhoff theory , a plane section of the plate remains perpendicular to the deformed axis of
the plate in the deformed state. This traditional bending theory is applied for thin plates and is
supported by following assumptions (ref .[1]):

The middle plane is free of strains and stresses

The stress component perpendicular to the surface (o,) is negligible (o, J0)

Normal stresses on the middle plane also remain perpendicular to the reference surface after the
deformation (hypothesis of Bernoulli)

For this theory the following conditions have to be satisfied:

The thickness t of the plate is small with regard to the span L (t/L < 1/5)

The deflections w remain small in comparison to the thickness of the plate t (w/t < 1/5)

On the other hand, the Mindlin theory doesn’t have all of the above-mentioned assumptions.
The normal stresses on the middle plane remain straight but not necessarily perpendicular to the
middle plane after deformation. As a consequence, additional strains yxz and yyz arise in case of a

Mindlin element.

This is shown on the picture below.
a) Represents the used symbols.
b) Shows the Kirchhoff element.

c) Demonstrates a Navier balk,
which corresponds to the Kirchhoff element.

d) The Mindlin element.

Navier balk _ .

Kirchhoff Mindlin
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The choice between these two elements can be made using the menu function Calculation, mesh >

Solver setup . Default the Mindlin theory is used and because of this, special attention has to be paid
to the use of thin plates.

i | Solver setup

S

Name
= General
MNeglect shear force deformation (Ay, Az == A)

Bending theory of plate/shell analysis Mindlin | =

Type of solver

MNumber of sections on average member

‘Warning when maximal translation is bigger than [mm]
Warning when maximal rotation is bigger than [mrad]

Print time in Calculation Protocol

Effective width of plate ribs

Coefficient for reinforcement

=

Kirchhoff

1000,000
100,000
v

1

This option is only in relation with 2D elements. Specifically for beams, the shear force deformation can
be taken into account or not by means of the option Neglect shear force deformation (Ay, Az >> A)

The influence of the shear force deformation is especially important with thick plates with a small span.

Model

In the example MindlinKirchhoff_ShearDeformation.esa

, a plate of 2m by 5m is supported at the

shortest edges and made of concrete C25/30 according to EC. The thicknesses are 300mm, 600mm
and 1200mm (from left to right). Surface loads of -150 kN/m2, -1200 kN/m2 and -9600 kN/m2 are

applied. The mesh setting for finite element plates is set to 0,5m.

Results

The deflection in the middle of the plate:

Uz [mm]
ooo
200
-4.00
-6.00
-8.00
-1000
1200 +=
-14.00 +
-16.00 -
-1800

-2043

Kirchhoff element Mindlin element % difference
Plate 300 mm -17.49 mm -17.01 mm 0.5%
Plate 600 mr idemr -1847 mm 3.2Y%
Plate 1200 mi idemr -1924 mm 13.7%
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Kirchhoff versus Mindlin on the edge of an element

In the theory of Mindlin three degrees of freedom are available on the edge of a plate element:

o w =deformation in the local z-direction of the plate
0 ¢; =rotation around ny (rotation parallel with the edge)

0 ¢, =rotation around nx (rotation perpendicular on the edge)

In Kirchhoff's theory only two variables are needed, the variable does not exist, because shear
deformation is not taking into account in Kirchhoff's theory.

On the edge, the following forces will be taking into account for Kirchhoff and Mindlin:

-l -4 - w) - -t ——t - - \ ]
3
\
4
d
—h = e S S i e
Kirchhoff Mindlin
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Kirchhoff assumes a constant torsional moment on the end of the plate.

At Mindlin’s theory, the torsional moment mxy will become zero on the edge, but this results in high values
for vx. In Mindlin’s theory the torsional moment will go from its maximum to zero over a distance of t/2 (t =
the plate thickness). For thin plates, this is a very small area, so when using Mindlin’s theory for thin plates a
lot of finite elements will be necessary on the edges.

This is shown in the following example.

Model

This next example (MindlinKirchhoff_edges.esa ) shows two plates with different thicknesses
(200mm and 2250mm). The mesh of this plate is 0,5m, but on the edges a denser mesh has been
inserted:

Results

The results on the thin and tick plates for both the Kirchhoff and Mindlin theory for different mesh sizes,
are displayed in the table below (for the forces, the averaged results in nodes are taken).

Thin (200mm) Thick (2250mm)

Element size Uz max |mxy| max. [vX| Uz max |[mxy| | max. [vx|
edge [m] [mm] edge edge [mm] edge edge

[kKNm/m] [kN/m] [KNm/m] [KN/m]

0,5 -6,191 15,00 15,53 -0,004 15,00 15,53

% 0,2 -6,184 15,03 16,35 -0,004 15,03 16,35
e 0,1 -6,190 15,04 15,19 -0,004 15,00 15,19
% 0,05 -6,190 15,04 16,69 -0,004 15,04 16,69
i 0,03 -6,190 15,03 17,53 -0,004 15,03 17,53
0,015 -6,190 15,04 21,37 -0,004 15,04 21,37

0,5 -6,314 14,75 212,62 -0,007 9,37 18,86

c 0,2 -6,319 14,82 217,38 -0,007 9,75 18,96
% 0,1 -6,328 14,82 218,54 -0,007 9,79 18,90
£ 0,05 -6,335 14,86 226,93 -0,007 9,80 18,92
= 0,03 -6,339 14,84 228,42 -0,007 9,80 19,12
0,015 -6,340 14,85 218,68 -0,007 9,80 19,15
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Interpretation
Uz

The deformation Uz for Mindlin and Kirchhoff in the middle of the plate will be the same and will not
depend on the border mesh size.

Mxy

Normally, the Mindlin theory would result in zero mxy using small elements. The comparison between
Mindlin and Kirchhoff is made in the diagram below for the thin plate . It clearly shows us that for thin
plates, there is no real difference in the result for mxy by using the Mindlin or Kirchhoff theory.

16,00 - — —
14,00 e — —
12,00
10,00

8,00

6,00
4,00 Kirchhoff

== Mindlin

mxy [kNm/m]

2,00
0,00

0,5 0,2 0,1 0,05 0,03 0,015
mesh size [m]

The comparison for the tick plate shows that when the calculation is done with Mindlin, mxy reaches
lower values, even with a rougher mesh size (a mesh of 0,5m).

16,00

14,00

12,00

10,00 S—

8,00

== Mindlin
Kirchhoff

6,00

mxy [kNm/m)]

4,00

2,00

0,00
0,5 0,2 0,1 0,05 0,03 0,015
mesh size [m]
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VX

When looking at vx for the thin plate, the small values for vx at Kirchhoff's calculation can clearly be
seen, even with a small number of elements. But the Mindlin theory only gives high values for vx.

250,00

200,00

=
(9]
o
o
o

’

Mindlin
Kirchhoff

=
o
o
o
o

’

vx [kN/m]

50,00

0,00

0,5 0,2 0,1 0,05 0,03 0,015
mesh size [m]

In this case, calculating with Kirchhoff is a better option, because Mindlin does not give good results,
unless you would use an unrealistic small mesh along the border.

When investigating the thick plate, it is clear that vx remains very small for Kirchhoff, and also Mindlin
gives good results for vx.

So for thick plates, calculating with Mindlin will give the best results, because shear force deformation.

25,00

20,00

15,00

10,00 == Mindlin
Kirchhoff

vx [kN/m]

5,00

0,00
0,5 0,2 0,1 0,05 0,03 0,015
mesh size [m]
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Conclusion
Thin plates

e Calculating with Kirchhoff gives the best results for thin plates
e Using Mindlin a lot of elements will be necessary to obtain good results.

e Using Kirchhoff, the size of the elements do not have to be smaller than the plate thickness.

Thick plates

e Calculating an isotropic, homogeneous plate, Mindlin will be necessary

« Onthe edge a denser mesh will be necessary (more than 5 elements over the half of the plate
thickness)

¢ Mindlin will also give good results for thin orthotropic plates with a small shear stiffness

49
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Orthotropic properties in plates

| The topic ‘orthotropic properties’ is available in the Concept Edition of SCIA Engineer.

Isotropic plate versus ‘1-direction’ plate

Model

The model Orthotropy_1direction.esa is used to show the difference between an isotropic and
orthotropic plate. The orthotropic plate will be modeled to transfer loads through bending in only one
certain direction.

' Orth'otrop-ic - - - lsotropic

The behavior of the plate will be investigated by checking how the load is transferred to the supports. In
most use cases, the structure will transfer loads from the plate to the beams, and then from the beams
to the supports. This behavior will be checked in the following steps.

There is only 1 load case taken into account. In this line load, the separated beam will receive the
same amount of load as what would be expected in the models with the plates.

=

=

ey
|

As the plates are 6m x 6m, and the surface loads are 1kN/mz, the load transferred to the beams should
be around 3kN/m.



Orthotropic properties

Now the orthotropic properties will be applied. This can be done by selecting the 2D element, and
changing the FEM model property to orthotropic. A new property will appear: “Orthotropy”.

Properties o = Properties a3 x
2D member (1) D AT 2D member (1) B \T: YA
\a/ x \'/ -
MName Orthotropic = Name Isotrepic 2
Type plate {111} - Type plate (111) -
Analysis model Standard - Analysis model Standard -
Shape Flat Shape Flat
Material 5 235 5 235 izl I
FEM model Orthotropic - Isotropic -
FEM nonlinear model none - FEM nonlinear model none -
Thickness [mm] 20 Thickness type constant -
m - Thickness [mm] 20
ermnber system-pla.. Centre EE Member system-pla.. Centre - |=
Eccentricity z[mm] 0 Eccentricity z[mm] 0
LCS type Standard - LCS type Standard -
Swap orientation o Swap orientation "lno
vee e nnn

In OT1 (orthotropic properties), the option 2 heights will be chosen. This allows both the flexural and
membrane strengths to be configured with height parameters. The ‘1’ direction corresponds to the x-
axis of the Local Coordinate System of the plate, the ‘2’ direction corresponds to the y-axis (which can
also be derived from the explanatory image below).

% | Orthatropy
i AieBL 0 S EH A
i o7l MName OT1
Type of orthotropy Two_heights . - I
Material 5235 | |
E Flexure
Effective height (d1) [mm] 20 N l
SR |
Torsion reduction coeff
Shear reduction coeff 12
D11 [MMm] 1,5385e-01
D22 [MNm] 1923108
D12 [MMNm] 1,6318e-05
033 [MNm] 1,9037e-06
D44 [MMN/m] 1,3452e+03
D55 [MM/m] 6,73082+00
5 Membrane
Effective height (h1) [mm] IlU
Effective height (h2) [mm] §10 I
Shear reduction coeff I
Material 5235 >
d11 [MMN/m] 2,3077e+03
d22 [MMN/m] 2,3077e+03
d12 [MN/m] 6,9231e+02
d33 [MMN/m] 8,0768%e+02
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Results

The linear calculation is performed. We look at the moments in the beams to see how loads have been
transferred. In this result, you can see that the moment in the beam is practically the same for the
single beam and the beams with the orthotropic plate.

Interpretation

The difference between the isotropic and the orthotropic element is (obviously) caused by the
orthotropic properties. The isotropic plate also has capacity to deviate the load towards the support.

mx [kNm/m] -

476

4.00
3.60

my [kNm/m] -

1.10
0.80
0.60
0.40
0.20
0.00

' Orthotrobic -0z
-0.40
-0.60

-0.80

L

-1.18

14 . . N
AN

Thus the transverse bending stiffness of the isotropic load reduces the amount of load which would be
sent to the beams.



Orthotropic properties

This effect can also be visualised in the following manner. Isotropic plates have equal strength in all
directions. So in relation to the stiffness of the plate, it will send loads directly to the support instead of
to the beam, when close enough to the supports.

_ -1,00 -1,00 -1,60 ~-100
=300
e -
. Orthot.u‘,_m ' Isotropi
< — —_—
L. o | v/ =
~3.00 N—mnu -1.00 —100 || —1.00
— AN : N

This effect would even become more dominant if the stifnesses are higher. To show this, the thickness
is doubled in both the orthotropic and isotropic plate. To do this, the OT1 setting is changed, and the
properties of the isotropic plate are changed.

This is also saved in the project Orthotropy_1direction_thicker.esa

MName 0Tl
Type of orthotropy Two_heights
Material 5235 Properties
= _Flexure 20 member (1) m ;|
Effective height (d1) [mm] 40
ective height mm
Torsion reduction coeff 01 MNarme Isotropic
Shear reduction coeff 1 Type plate (111)
D11 [MNm] 1,2308=+00 Analysis model Standard
D22 [MMNm] 1,9231e-08 Shape Flat
012 [MNm 4.6154e-05 .
D33 {MNm; 5,3846e-06 Material 5235
D44 [MN/m] 3,2308e+03 FEM model Isotropic
D55 [MN/m] 8,07692+00 FEM nanlinear model none
= Membrane Thickness type constant

Effective height (h1) [mm] 20 R Thickness [mm] | 40|

——— Member system-pla... Centre
. 1 =
Shear reduction coeff Eccentricity z [mm] 0
Material 5235 Lcs Standard
andar
d11 [MN/m] 4,61542+03 type
d22 [MN/rn] 4,6150e+03 Swap orientation no

Now the beams along the isotropic edge have to take even less load, since the isotropic plate has
higher bending stiffness in the y-direction. This allows the isotropic plate to transfer a bigger part of the
load directly to the supports.

_ .Drtl—_lo-trlo Ric .

P4

‘? r . lsotropic 3
s W ﬂﬁi‘?‘t@
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Pressure only

The topic ‘pressure only’ is not available in the Concept Edition of SCIA Engineer.
The license code is esas.44 and it is only part of the Professional or Expert Edition

When using pressure 2D elements, the functionality Nonlinearity and Pres only 2D members must be
activated. The 2" order — geometric nonlinearity ~ functionality is also important as it allows us to use the
Newton-Rhapson solver.

s B
Project data @

Basic data 'Fl.inct'ionaii'ty' Actions  Protection

S'E:Iil’laul " Dynamics #| |E Nonlinearity

Engineer Initial stress Initial deformations and curvature
Subsoil 2nd order - geometrical nonlinea., ¥
MNonlinearity v Physical non-linearity for reinforc...
Stability Beam local nenlinearity
Clirnatic loads ; Support nonlinearity/Soil spring
Prestressing Fricticn suppert/Seil spring
Pipelines = Membrane elements
Structural model v
BIM properties General plasticity : I
Pararmeters Sequential analysis
Mohbile loads = Concrete

Autorated GA drawings
LTA - load cases
External application checks

Slabs with void formers

Property modifiers

o =

With this option, tension in 2D elements can be automatically eliminated. This is mostly used for
masonry elements. When using this functionality, it is advised to adjust some parameters to smoothen
the calculation. This will be treated in the next examples.

Masonry wall with window

Model

The model PressureOnlyl.esa is used to show the difference between an isotropic and linear
calculated wall (on the left) and a pressure only calculation (on the right).

g 8 8 3
T T T T
L] LD
Yy ¥y ¥ ¥ v ¥ Yy ¥ ¥ ¥ ¥ ¥ 3
&1 82
r\
L—!—:/W'fff!f'f'f'f!!!f'fﬁ'f F - - A A A - - - B0 A k-2 B 8- 2k -4

K Ed



Pressure only

Since a pressure only wall cannot take any tension, there are beams added over the opening to take
the tension in that position.

To indicate which walls are calculated as pressure only, it is possible to assign the ‘Press only’ property
to the FEM nonlinear model setting.

Properties 1 x Properties 1 x
20 member (1) RaT:A 2D member (1) v v
2 X
Name 51 o Name 52 ol
Type plate (90) s Type plate (90) M
Analysis model Standard T Analysis model Standard T
Shape Flat Shape Flat
Material C30/37 T Material C30/37 T
FEM model Isotropic -~ E FEM model Isotropic R
_ Press only |
Thickness type constant " Thickness type constant i
Thickness [mm] 200 Thickness [mm] 200
Mmnbnr b mle Cantrs - o -

To calculate this non-linear setting, the non-linear calculation must be done.

This requires non-linear combinations. Since a non-linear combination is non-associative, loads must
be combined before the calculation, as opposed to the linear calculation. And thus non-linear
combinations are required.

B | Nenlinear combinations @
Al BB | &lA -
NCL [Name NCL
Description
Type Ultimate -
=l Contents of combination
LC1 (-] 100

Now before starting the calculation, we will first run over the solver and mesh settings. This is very
important in a pressure only calculation.

In the solver settings:
- The maximum iterations is set to 100.
- The Geometrical nonlinearity solver is set to Newton-Raphson .
- We allow the solver to us 4 iterations .
- The solver precision ratio is reduced to 0,25.

B Solver setup =
MName
=l General
Neglect shear force deformation { Ay, Az >> A)
Bending theory of plate/shell analysis Mindlin ~
Type of solver Direct ~
MNumber of sections on average member 10
‘Warning when maximal translation is bigger than [mm)] 1000,0
‘Warning when maximal rotation is bigger than [mrad] 100,0
Print time in Calculation Protocol v
=/ Nonlinearity
Maximunm iterations 100
Geometrical nenlinearity - Land I order Newton-Raphson -
Number of increments 4
cacificicats ; 1

When the calculation is performed, the elements which take tension will have their rigidity reduced in
the direction of the tension stress. The rigidity is reduced uniformly in that direction for the entire finite
element. For this reason, the mesh must be sufficiently fine (in this example 0,150m is used).

. .
W7 Mesh setup .- s s a . =)

Name

= General mesh settings

Minimal distance between two points [m] 0,001

Average number of tiles of 1d element 4

Average size of 2d element/curved element [m] 0,150

Definition of mesh element size for panels Autornatic -.
Average size of panel element [m] 1,000

Elastic mesh i
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Results

The non-linear calculation is performed. This calculation will modify stiffnesses in the press only wall
until tension is sufficiently reduced or until the maximum number of iterations is achieved.

The difference between the isotropic and the pressure only elements can be clearly view looking at the
normal force nl for these members. This result can be found under 2D member — Internal forces by
setting the Type of forces to Principal magnitudes . After this, n1 can be chosen as value.

o . o . Ln1 [kN/m] -

O O L 83 5
I 80
50

I A A A A

20

B2 0

52

e — -100

Interpretation

By asking the results as prinicipal magnitudes, the user can ask the biggest normal force (not in the x-
direction, but in the direction with the biggest value). The biggest normal force means the most tension.

As nlis zero for the plate on the right, it is confirmed that all tension is removed from the wall.

In the results of only the wall on the right, it is also clear to see that n1 (the normal force in the direction
which has the biggest normal stresses and no shear stresses) is practically zero or negative.

This also confirms that the used precision criterion in the solver settings is sufficient.

n1 [kN/m]
0.01
0.00

-10.00
-20.00
-30.00
-40.00
-50.00
-50.00
-70.00
-80.00
-80.00

-98.13




Pressure only

Cantilever with ribs as reinforcement

When looking at the pressure diagonals in a reinforced 2D concrete element, ribs can be imported as

reinforcement.

Model

In this example PressureOnly2.esa , a plate with a bearing support is inserted with three ribs acting as

the reinforcement of the plate.
|

Calculation

In the non-linear calculation, the solver can indicate
that the structure is instable if the reinforcement ribs
are too weak for example, or if the wall cannot take

the loads without inducing tension.

To investigate the problem, you can choose to
continue with the calculation. This allows you to see
the results with which the non-linear solver has
stopped.

If the calculation has been performed, the status
window shown on the right will become visible.

It is clear that the non-linear calculation has found
much bigger displacements than the linear
calculation.

e

100,00

Scia Engineer: End of analysis

Linear calculation:

- Maximal translation 0321 mm,

in node 115 [10.000,7.200,0.000] (loadcase LC1)
- Maximal rotation  0.263 mrad,

in node M2 [0,000,10.000,0.000] (loadcase LC1)

Sum of loads and reactions is OK

Successful calculation

Maximal translation 576.196 mm

in node 117 [10.000,6.800,0.000] (Monlinear combination MNC1)

Maximal rotation -576.434 mrad

in node M1 [0,000,0.000,0.000] (Monlinear combination NC1)

Sum of loads and reactions is OK

N
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Looking at the results of this 2D element, the pressure diagonals inside this element are clearly visible
(after changing the panel settings):
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Ribs

Annex 1: Calculation of Rx in eccentric beams

Input

Cross section = 300mm x 500mm
Material = C25/30, with E = 31500MPa
Line load = -10kN/m

Length of the beam = 6m

-10,00

-10,00

Calculation

Formula of elongation

The total elongation is the sum of all the elongations at all the different positions on the beam.
Such a sum can be calculated by integration.

*« We want to integrate the elongation over the length of the beam.
¢ The elongation can be calculated from the stress.
¢ The stress can be calculated from the moment.

L Lo(x) M, (x) * z
JO e(x)dx JO 7 9x ] x

Moment line

So to calculate the elongation, we need to know the moment line in function of the position on the
beam. This bending moment is a parabola in function of x (the position on the beam).

If there is no eccentricity, then the result would look like this:

o No ecoentricikty
iy A
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Now to compose the parabolic function:
M,=ax*x*+bxx+c

We know about 3 points of this parabola:
If x=0m then M, = 0kNm

If x=3m then M, = —45kNm
If x=6m then M,= 0kNm

We can compose the following set of equations:
0=a*02+b*x0+c
* J—45=ax*3°+b*x3+c=9a+3b
0=ax62+bx6+c=236a+6b

We can derive from these equations that:

a=5
b =-30
c=0

Resulting in:
M, = 5x* — 30x

Calculation of the total elongation
As mentioned before, the total elongation of the bottom fibre due to the bending moment can be

calculated b
g L La(x) LM, (x)*z
JE(x)dx=J —dx=_f 2 T dx
o 0o E 0 ExI

This elongation must is countered by a reaction force in the support.
But in exchange, this reaction force causes an additional moment and an additional normal stress. So
we can rewrite the equation above as:

L Lo(x) L(My(x)—RX*ez)*z R,
joe(x)dx—Lde—Jo Y +A*de—0
F(My(O —Reve)*z Ry fL(sacZ—30x—Rx*ez)*(—h/2)+ Re -
o Ex1 AxE 0 ExI AxE
= h 65 2_-30x —R d "Ry d
——mfo(x— X — x*ez) X+£A* X
h 5x3 ® [R *x]8
_ o 2 _ X 0
= 2*5*1*[3 15x ezRX*X]O+ A~E
—0,5m 5% (6)3 5 5
= 03m*(05m)3* 3 —15%(6)*—6%0,25*R, | —0 | kNm
2*31500MPa*#
+ 6m * Ry
0,5m * 0,3m * 31500MPa
—0,5m 6m * Ry

* (360 — 540 — 1,5« R,) kNm? +

—05m (~180 kNm? — 1,5 = R, « Nm?) + —” Rx
=— — — % (— - * * - -
196,875 MNm? T L R A T 05 MN

_90kNm+O,75me+ 6m*R, 2490 kNm +24 % 0,75m * R, + 6m * R, _ 0
T 196,875 MN 4725 MN 4725 MN -

~ 2+31500MPa * 0,003125m* 0,15m? * 31500MPa

Or, it can be simply concluded that:
2490 kNm + 24 +x0,75m*R, +6m =R, =0
24 x90kN +18*R, +6*R, =0
R, = —90 kN

60



Annex

Annex 2: “Location”, the post -processing of results

During a calculation in SCIA Engineer, the node deformations and the reactions are calculated exactly
(by means of the displacement method). The stresses and internal forces are derived from these
magnitudes by means of the assumed basic functions, and are therefore in the Finite Elements Method
always less accurate.

The Finite Elements Mesh in SCIA Engineer exists of linear 3- and/or 4-angular elements. Per mesh
element 3 or 4 results are calculated, one in each node. When asking the results on 2D members, the
option ‘Location’ in the Properties window gives the possibility to display these results in 4 ways.

A. In nodes, no average

All of the values of the results are taken into account, there is no averaging. In each node are therefore
the 4 values of the adjacent mesh elements shown. If these 4 results differ a lot from each other, it is
an indication that the chosen mesh size is too large.

This display of results therefore gives a good idea of the discretisation error in the calculation model.

12 | 16 24 | 32
9| 18 251 3
1|18 Z4 | 29
a9 17 24 30

B. In centres

Per finite element, the mean value of the results in the nodes of that element is calculated. Since there
is only 1 result per element, the display of isobands becomes a mosaic. The course over a section is a
curve with a constant step per mesh element.

21

C. Innodes, average
The values of the results of adjacent finite elements are averaged in the common node. Because of
this, the graphical display is a smooth course of isobands.

In certain cases, it is not permissible to average the values of the results in the common node:
- At the transition between 2D members (plates, walls, shells) with different local axes.
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- If a result is really discontinuous, like the shear force at the place of a line support in a plate. The
peaks will disappear completely by the averaging of positive and negative shear forces.

D. In nodes, average on macro

The values of the results are averaged per node only over mesh elements which belong to the same
2D member and which have the same directions of their local axes. This resolves the problems
mentioned at the option ‘In nodes, average'.

14 [ 14 25 | 28
41 14 28 | 28
13113 2727
13113 N

Accuracy of the results

If the results according to the 4 locations differ a lot, then the results are inaccurate and the mesh has
to be refined. A basic rule for a good size of the mesh elements, is to take 1 to 2 times the thickness of
the plate.
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erties

Annex 3: Theoretical background of orthotropic prop

Theory

Strains and stresses

In a 3D model, the following components of deformations appear in each point (respectively the
deformations according to the x-, y- and z-axes):

u(x,y,z)
v(x,y,z)
w(x,y,z)
From these deformations the following strains can be calculated:
du
_ du/ . /dx
€y dx dv/dy
dv
[‘Zy ] Jdy dw/
_|Z]_| dw _ z
£ ey 05 */6)1/2 05+ 4/, + d”/dy)
Esz : Xy
L:yz gg * Vxz 0.5 * (du/dz + dw/dx)
D o*
I 22 P (dw/dy + dv/dz)
The stresses in each point are:
— O'x
Oy
UZ
o= Oy
UXZ
,o-sz

The stresses and strains are connected to each other, in the simplest case this connection is linear (Hooke’s
law):
o=De¢

D is a 6x6 matrix. The connection between stresses and strains is not based on assumptions, but describes
the real physical behavior of the material. For that reason, this matrix is called the “constitutive” matrix.

Internal forces

In the analysis of a 2D plate, the stresses are replaced by internal forces, which we will indicate with the
symbol ‘'s’. These internal forces are known as the results of SCIA Engineer:
T T
S=[Sm ,Sb |

Sm = [Ny Ny, Q] for membrane forces
Sb = [My, My, My, 0y, qy]" for bending

The components of the deformations that are used with a 2D plate are the deformation of the axis of the
plate (w), the rotation on the x-axis (@) and the rotation on the y-axis (@,).

w(x, y) = w(x, y, 0)
(X Y)

@(x,Y)

With the Kirchhoff element the normal remains on the plate axis perpendicular to the plate axis. So there is a
double connection between w and :

63
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@, = -dw/dx

@ = dw/dy

With the Mindlin element the shear force deformations vy, and v, also occur:
@ = -dw/dx + Yy,

@ = dwidy + v,

i

SN TR FEE
I.‘.W’

¥
»
Py

Relation between strains and internal forces

From these 3 components of the deformation the strain can be calculated in each point of the plate (with the
usual assumption that an even cross-section remains plane). From this strain the stress can be calculated in
each point of the plate by means of the constitutive matrix. Through integration of these stresses over the
thickness of the plate, the internal forces that belong to the deformation can be calculated (for the full
calculation is referred to ref. [2]).

This gives the following connection for the membrane forces and deformations in the plane:

n, dy dj, dj &,
n, d, d,, dy 0 e,
Oy dy dy dy Vi

'm | [D, D, D, 0 0| %
m, D, Dp Dy 00 2
My |={Dy; Dy Dy 0 00 (¢y_¢x)
a, 0 0 D,, Dy Vo
q, | 0 0 Ds;s Dss | Vye

‘means the derivative to x, *, means the derivative to y. ¢'y en -¢’, are curves.
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In most textbooks the shear force deformation is neglected. Then:
', = -d*w/dx’ = curve Ky
-0 = -d’w/dy” = curve Ky,

0"y - 0" = -d°w/dxdy -d°w/dxdy = -2 d°w/dxdy = curve 2 Kk,

The matrix for the bending effects is subsequentiten as:

m, Dy D Di| ke
m, (=D, Dy Dy|Uky,
m,, Dy Dy Dy |2« X

By dividing the membrane force components and the bending components, it is implicitly assumed that these

components do not mutually influence each other.

These stiffness matrixes do not only describe the physical behaviour of the material, but also the stiffness of
a plate element. This is specified by the material, possibly different materials over the thickness (reinforced

concrete, laminated plates) and by the geometry (ribs, ...).

In SCIA Engineer the following components are entered in this matrix:

diq, dgp, dzzand d
Dll! D221 D33, D441 D55| D12

D44 and Dss are added because Mindlin elements with shear force deformations are used. In many cases

there are no simple formulas to calculate these stiffnesses.

The orthotropic parameters can be calculated by means of following formulas:
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for plate elements :
_ E, h®
Dll T aAar1 .. W
(12(1'V12 m’21))
_ E,¥W
2 (12(1v,,))
Dy, =Dy =v,D =V, [D ,

O

G, 1’
D — 12
33 12
D44 = Glsm
DSS = C-:‘ZSD1

G13 and G,; are used for the calculation of the stiffnesses D44, and Dss. These are the stiffnesses for shear
force deformation. In some cases they cannot be calculated exactly. In that case it is advised to enter Dy,
and Dss much larger (1000 times larger) than the other stiffnesses.

In this way you will neglect the shear force deformation. The influence of the shear force deformation is
restricted with normal plate thicknesses/stresses.

The best method to have a better approach for G13 and G23 is to calculate with following formulas:

G =
201+ v,,)
Gpy= s
200+ 7,0)

for “wall” elements:

__ED
. a- Vio m’21)

_ E,
2" N
(1_ Vio |]’21)

d33 = Glz [h

d12 = d21: |/21|]j11: v 12Ijj 28

Shell elements have both characteristics of a plate element as from a “wall” element. That way all physical
constants, as described above, need to be applied.

A real example is the use of floor plates that wear out in only one direction. With this, you can use orthotropic
parameters. In the two directions several stiffnesses need to be applied, to which you can attribute a quasi
neglected stiffness to the shear direction.

Another method to model this real example can be done as follows: you reduce the measurements of the
plate a bit so they just fail to hit the non-supporting beams. What's more, you attribute a Poisson coefficient
of 0 to the plate material.

A plate that is respectively torn and not torn in the X and the Y direction can also be modeled as a plate with
orthotropic parameters. This way a different E-module can be applied in both directions.
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Library of orthotropic properties

In SCIA Engineer there are different standard cases of orthotropic types implemented.

|87 Orthotropy ﬁ
Ao 0o G SH A . 7
om Name oT1

Type of arthatropy

Thickness of Plate/Wall [mm]

Material Two_heights

One direction slab

D11 [MNm] Siab with ribs

D22 [Mhm] Grid work

D12 [MMm] et

D33 [MNm] 7.5278e+00
Standard

This is the standard case of an orthotropic type where you have access to all available orthotropic
parameters. The user must input all parameters himself: D11, D22, D12, D33, D44, D55, d11, d22, d12 and

d33.
Name: oM
Type of orthotropy Standard
Thickness of Plate/Wall [mm] 200
Material C12415
0771 [MMm] 1.8819e+01
D22 [MMNm] 1.8819e+01
012 [MMm] 37639200
D33 [MNm] 7.52782<00
D44 [MM/m] 1.8819e+03
D55 [MM.m] 1.8819e+03
d11 [MM.m] 5.64582+03
d22 [MM.m] 5.64582+03
d12 [MM.m] 1.12522+03
d33 [MM.m] 2.2583e+03

Two heights

This orthotropic type simulates a slab with a different thickness in local x and local y direction.

in-situ poured Iayﬁgr

dlI .lA\ I’H\
/L A

AN

| jf \\.

prefabricated desk

d2 (y)

dl (x)

Ao WANSAS .
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The user must input the effective heights and reduction coefficients:

Mame 011
Two_heights
Matenal C12415
B Hexure
Effective height {d1) [mm] 200
Effective height (d2) [mm] 200
Torsion reduction coeff 1
Shear reduction coeff 1.2
D11 [MNm] 1.8819e+01
D22 [MMNm] 1.8815%e+01
012 [MMNm] 3.7635e+00
033 [MMNm] 7 527 8e+00
D44 [MM/m] 1.8815%e+03
D55 [MM/m] 1.8815%e+03
B Membrane
Effective height {h1) [mm] 100
Effective height (h2) [mm] 100
Shear reduction coeff 1
Matenal C12415
d11 [MM.m] 2 8275+
dZ2 [MM.m] 2 8225%e+03
d12 [MN/m] 5 64502+02
d33 [MM.m] 1.1252e+03
Then the orthotropic stiffness parameters are calculated:
3
Dy, = —E- & diy = E._hlz
12.(1 —v?) (1-v?)
3
D,, = E—dz dy, = E_—hzz
12.(1 —v?) (1-v?)

D12 = V.4/ D11. D22
(1 —=v).y/Dy1.Dg,
2

D33 = vp1.
G- dl
D, =
44 B
G- d2
D =
55 8
With:

Y¢; = torsion reduction coeff.
8 = shear reduction coeff.

diz = Vv.y/dq;.d2;
(1—v).y/dy1.d3,
2

d3z = Yro-

With:
Yr2 = shear reduction coeff.
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One direction slab

Simulation of a slab which carries it's load mainly in one direction:

h

i%—sim ﬂ|1in poured layer

a

Y

I
/:OIOiO:oz\/IOIOiQ:o:\
h

"hollow core plate"

T

The rigidity in the main direction is calculated based upon the properties of a user defined cross-section. The
user should define the cross-section (CSS) of these unidirectional prefab elements and then use this CSS to

define the orthotropy.

Along with the CSS, the user must input the height of the topping h and the distance (L) between the

elements:

All orthotropic parameters are calculated: B
E..L, E;.hy
1n="7 diy = (D)
E,.h3 E,.h,
Dyy = —— = =
22 12 d22 (1 _ vz)
D, =0
12 dip = v.4/dy;.dyp
G,y It Gy.h
1L 1)+( 23 ) don = (1—v).\/dy;.dy
Ds; = 3 33 = —2 =
G;. Az,
D,, =
44 L
Gy.h
Dec =
W)

Mame

0T

One direction slab
Hexure

C51 - Rectanale (200; 300)
1000

C1245

200

C55

L [mm]

Material

h [mm]

D11 [MMm]

D22 [MMm]

D12 [MMm]

D33 [MMm]

D44 [MM/m]

D55 [MM/m]
Membrane

Effective height (1) [mm]
Effective height (h2) [mm]
Material

d11 [MN/m]

d22 [MN/m]

d12 [MN./m]

d33 [MN/m]
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Slab with ribs — rib inputted by the user

Simulation of a slab with ribs in one direction:

I j Y
a0 | i
al ¥

- 1

The user must input the rib dimensions, rib spacing and slab
height. MName oM

Siab with ribs
B Aexure
With these parameters, the orthotropic stiffnesses are B Rib
calculated: Rib Input
Material 1 C1215
Fib thickness t [mm] 300
Rib depth,H-+ [mm] 500

Spacing,al [m] 0.500
= E dy; = Ei.dy E Siab
1 X
) E.al.h? dae = B o :at;;al' ht. h [mm]
.al. ab height, h [mm
3 >] diz =/d1g.dy2 D11 [MMm]
: D22 [Mhm]
Jdiq.d
dyg =—— D12 [MNm
D1, =0 D33 [MNm]
Dus — E.h3 4 G.It D44 [MM/m]
¥ 7 12.(1-v) 2.al D55 [MN/m]
Bl Membrane
Dys = = Effective height (H) [mm]
1.2 ) ) -
Effective height (h) [mm] 50
= G.Az Material
al d11 [MN/m]
d22 [MN/m]

d12 [MM./m]
d33 [MM./m]
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Slab with ribs — rib selected from the cross-sectio n library

Simulation of a slab with ribs in one direction:

lij Y
a0 i
al

- 1

-

The user must select the rib from the library and input the rib spacing and slab height..

All orthotropic parameters are calculated:
MName 0T

Slab with ribs
B Hexure
= H | Rib
(1=v¥) Fib CSS Lib
_ EZ'h3 E,.d, Cross Section C51 - Rectangle (500; 300)
D) Spacing.al [m] 0.500
E Slab

diz = Vv.y/dis.dg, Material C12/15

3
(Gy.Ity) + (Gzéh ) (1=v).\/dy;.dyy Slab height, h [mm]
5 dyg=———7— D11 [MNm]

022 [MNm]
L= 2h D12 [MNm]
12 033 [MNm]

b.. = G1-AZ D44 [MN/m]
55 L D55 [MN./m]
B Membrane

D33 =

Effective height (H) [mm] 100
With: Effective height () [mm] 150
¢ index 1 — Cross-section properties Material
¢ index 2 - Slab properties d11 [MN/m]
«  Properties are taken from CSS and material: d22 [MN/m]

o E modulus E; d12 [MN//m]

o Moment of inertia I, d33 [MN/m]

0 Torsional moment of inertia I,

o Effective surface for shear 4,,
¢ G modulus G;
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Grid work — ribs inputted by the user

This orthotropic type simulates a slab with ribs in local x and local y direction.

¥

Y
H

b1

al

The user must input the rib dimensions, rib spacing and slab height.

From this input, all orthotropic parameters are calculated.

El-Il
D., =
11 b1
EZ-IZ
D, =
22 al
Dy, =0
b =( b+ (402
33 4
G. Azl
D4—4—_ b1l
G. Az2
D55_ al

d;; =E;.hy
d22 = Ez.hz
dip = vV dyq.dy,
v dy1.dy;
ds3 = T

Mame
Type of orthotropy
E Aexure

Beam
B beam.1
Material 1
Width of beam, t1 [mm]
Depth of beam, h1 [mm]
spacing. al [m]
B beam.2?
Materal2
Width of beam, t2 [mm]
Depth of beam, b2 [mm]
Spacing, b1 [m]
D11 [MMm]
D22 [MMm]
D12 [MMm]
D033 [MMm]
D44 [MM.m]
D55 [MM./m]

& Membrane

Effective height (h1) [mm]
Effective height (hiZ) [mm]
Material

d11 [MM.m]

d22 [MM./m]

d12 [MM.fm]

d33 [MM.fm]

0T
(Grid work

Inpt
C12/15
300

450
0.500

e+01

| ohlca
o}
|

o}
|

5
]
5
5
5
]
L | oo | L | LA
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Grid work — ribs selected from the cross-section li

brary

This orthotropic type simulates a slab with ribs in local x and local y direction.

¥

al

Y
H

b1

The user must select the ribs from the library and input the rib spacings and slab height.

All orthotropic parameters are calculated:

1l di; =E;hy
Dy, = b1
dzz = Ez.hz
EZ-IZ
P22 =1 dip = /dy1.dz;
D, =0 dow = Vdis-dyp
335 T 5
G,. Ity G,.It, 2
Do = G50 + (%)
33 4
D.. G.Az1
4“4 = T
Do = G.Az2
55 = "1
With:

Properties are taken from CSS and material:

O O O o o

E modulus E;

Moment of inertia I;

Torsional moment of inertia I, ;
Effective surface for shear A4, ;
G modulus G;

Mame
Type of othotropy
H | Aexure

Beam
B beam,1
Cross Section
spacing, al [m]
B beam,2
Cross Section
Spacing, b1 [m]
D171 [MNm]
D22 [MNm]
012 [MNm]
D033 [MNm]
D44 [MN/m]
D55 [MN/m]

B Membrane
Effective height (1) Jmm]
Effective height (h2) Jmm]
Materal
d11 [MM./m]
d22 [MM./m]
d12 [MM/m]
d33 [MM/m]

0Tl
(Grid work

C55 Lib

C51 - Rectangle (500; 300)
0.500

51 - Rectangle (500; 300)
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