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CHAPTER 1 : INTRODUCTION 
 
 
The examples in this manual can be made in a full licensed as well as in a try-out or student version of SCIA Engineer. 
 
Here follows an overview of the required SCIA Engineer modules / editions, per subject: 
 

- Eigen frequency calculations 
Esas.21 (Dynamics (natural frequencies) – Frames)   Professional edition 
Esas.22 (Dynamics (natural frequencies) – Surfaces)   Professional edition 

 
- Advanced dynamic calculations 

Esas.23 (Dynamics (advanced) – Frames)    Professional edition 
Esas.24 (Dynamics (advanced) – Surfaces)    Professional edition 

 
- Non uniform damping characteristics 

Esas.25 (Non uniform damping – Frames)    Not part of an edition 
 
 
Dynamic calculations are not so frequent in civil engineering as static calculations. On the other hand, they are inevitable 
in certain projects. Wind effects on high-rise structures, transverse vibration of towers and chimneys, structures located 
in seismic regions,…  
SCIA Engineer contains specialized modules covering common dynamics-related issues. In this course, the different 
aspects of these modules are regarded in detail.  
First, the foundation of dynamic calculations is examined: the eigen frequency calculation. Eigen frequencies form the 
basis for all types of dynamic analysis.  
In one of the last chapters, the eigen frequency calculation is extended with harmonic loads: the influence of for example 
vibrations due to machinery, can be calculated using these principles.  
Two chapters are devoted to seismic calculations and the influence of damping on the seismic action. 
 
All chapters are illustrated with examples. The relatively easy examples have been purposefully chosen to provide a clear 
understanding of what actually happens in the dynamic calculations. To this end, nearly all calculations have been verified 
by manual calculations to give a good insight into the application of the theory in SCIA Engineer.  
When the principles are clearly understood, they can be applied to more complex structures without difficulties. 
 
 
 

 
 
 
 

Functionalities from chapters 2 to 10 are available on the 64 bits version of SCIA Engineer. 
 
But, for the moment, functionalities from chapters 11 to 13 are only available  on the 32 bits 
version. 
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CHAPTER 2 : FREE VIBRATION : EIGEN FREQUENCIES 
 
 
In this chapter, the calculation of eigen frequencies in SCIA Engineer is explained in detail.  
Eigen frequencies can be required to verify comfort criteria for buildings, to analyse wind-induced resonance for bridges, 
to check requirements for sensitive equipment,…  
First, the theory behind the calculation is discussed and illustrated with an example. The procedure is then used for both 
frame and slab structures. The results of all examples are compared with manual calculations to provide a clear 
understanding of the applied principles. 
 
 

2.1 Theory 
 
To understand what is going on during the dynamic analysis of a complex structure with frames or finite elements, the 
free vibration of a SDOF (Single Degree Of Freedom) system is regarded in detail. A complete overview can be found in 
reference [1]. 
 
Consider the following system: 
 

 
 
 
A body of mass m is free to move in one direction. A spring of constant stiffness k, which is fixed at one end, is attached 
at the other end to the body.  
 
The equation of motion can be written as: 

m. ÿ(t) + k. y(t) = 0      (2.1) 
 
A solution for this differential equation is: 

y(t) = A. cos (ωt)  
 
Inserting this in (2.1) gives: 
  (-m. ω² + k). A. cos(ωt) = 0     (2.2) 
 
This implies that: 

ω = ඨ
k

m
 

          (2.3) 
 
Where ω is called the natural circular frequency. 
The natural period T can be written as: 

T =
2π

ω
 

          (2.4) 
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The natural frequency (or eigen frequency) f can be written as: 

f =
1

T
=

ω

2π
 

          (2.5) 
 
For a general, MDOF (Multiple Degree Of Freedom) structure, equation (2.1) can be written in matrix notation: 

M. U̇ + K. U = 0       (2.6) 
 
Where: 
 U is the vector of translations and rotations in nodes, 

U̇ is the vector of corresponding accelerations, 
K is the stiffness matrix assembled during the dynamic calculation, 
M is the mass matrix assembled during the dynamic calculation. 

 
From this equation, it is clear that the calculation model created for a static analysis needs to be completed with additional 
data: masses. 
The solutions of (2.6) are harmonic functions in time. A possible solution can have the following form: 

U =  Φ. sin (ω. (T − T଴)      (2.7) 
 

Notice that in this solution, a separation of variables is obtained: 
- The first part, (Φ), is a function of spatial co-ordinates, 
- The second part, sin (ω. (T − T଴), is a function of time. 

When substituting (2.7) in (2.6), an equation is obtained which is known as the Generalized Eigenproblem Equation: 
K. Φ − ωଶ. M. Φ = 0      (2.8) 

 
The solution of (2.8) yields as many eigenmodes as there are equations. 
Each eigenmode consists of 2 parts: 

- An eigenvalue: value ω୧ 
- An eigenvector: vector Φ୧, which is not fully determined. The deformation shape is known, but the scale factor 

is unknown. 
 
This scale factor can be chosen in different ways. In the next paragraph this will be explained further.  
 
An overview of the mathematical (matrix) approach behind the calculation of eigenvalues and eigenvectors can be found 
in reference [25]. 
 
 
 

2.2 Eigen frequencies in SCIA Engineer 
 
In SCIA Engineer, as scale factor, a M-orthonormalisation has been implemented. This is shown in the following relation: 
 Φ୧

୘. M. Φ୧ = 1       (2.9) 
 
Some of the characteristics of M-orthonormalisation are : 

Φ୨
୘. M. Φ୧ = 0 quand i ≠ j     (2.10) 

Φ୧
୘. K. Φ୧ = ω୧

ଶ       (2.11) 
 
The M-matrix (the mass matrix) can be computed in different ways. SCIA Engineer uses the so-called lumped mass matrix 
representation of the M-matrix. The lumped mass matrix offers considerable advantages with respect to memory use 
and computational effort because in this case the M-matrix is a diagonal matrix. The masses are thus guided to the nodes 
of the Finite Element mesh. 
 
This principle is illustrated on the following figure [28]: 
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The calculation of eigenmodes and eigen frequencies is thus made on a discretised finite element model of the structure. 
This means that instead of a general structure with an infinite number of degrees of freedom, a calculation model with a 
finite number of degrees of freedom is analysed.  
The number of degrees of freedom can generally be determined by a simple multiplication: the number of mesh nodes 
is multiplied by the number of possible displacements in the node.  
 
It is important to know that the accuracy of the model is in proportion to the "precision of discretisation", i.e. to the 
number of elements of the finite element mesh. This refinement has almost no practical meaning in static calculations. 
However, for dynamic and non-linear analyses, it significantly affects the accuracy of the results. 
 
Consider the following example. A beam on two supports is loaded by its self-weight. By default (for a static calculation) 
there is only one finite element for the beam. Taking the above into account, the mass M of the beam will be guided to 
the two end nodes of the beam since these correspond with the mesh nodes of the finite element mesh. 
 

 
 

In this case, this means that the entire mass will be located in the supports so no mass can go into vibration and the 
dynamic calculation cannot be executed. As indicated, a mesh refinement is required here to attain results. 
The following diagram shows the required steps to perform a Free Vibration calculation: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Activate the Dynamics functionality 

Create a mass group 

Create a mass combination 

Specify the number of eigenmodes to be calculated 

Refine the Finite-Element mesh if required 

Perform a free vibration calculation 

Input masses Generate masses from static load cases 
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The analogy between a static and dynamic calculation is clear:  
 
- In a static calculation, Loads are grouped in Load cases and the Load cases are used in Combinations.  
- In a dynamic calculation Masses are grouped in Mass Groups and the Mass Groups are used in Mass Combinations.  
 
The required steps from this diagram are illustrated in the following example. 
 
 
 
------------------------------------------------------------------------------------------------------------------------------------------------ 
Example_02-1.esa 
 
In this example, a beam on two supports is modelled. The beam has a cross-section type IPE 200, a length of 6m and is 
manufactured in S235 according to EC-EN. A node has been added to the middle of the beam, which will make it 
possible to add a nodal mass in that location. 
 
 

 
 
 
Only one static load case is created: the self-weight of the beam. 
 
 
Step 1: functionality 
 
The first step in the Dynamic calculation is to activate the functionality Dynamics on the Functionality tab in the Project 
Data. 
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When this is done, a new menu, « Dynamics » will appear in the main menu “Library”: 
 

 
 
And also in the input panel: 
 

 
 
 
Step 2: mass group 
 
The second step is to create a Mass group. 
 

 
 
As indicated in the diagram, a Mass Group is used to group masses in a same way a Load Case is used to group Loads. 
When a Mass Group is defined, masses can be inputted.  
SCIA Engineer also allows the user to create masses from a static load case.  
When for example a roof weight is inputted as line loads, the action “Create masses from load case” will automatically 
generate masses from these line loads. It is clear that this provides a quick input of necessary data. When the option 
“Keep masses up-to-data with loads” is ticked on, then the action to create masses will create masses which remain linked 
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to the loads of the load case. The amount of mass in a ‘linked’ mass is updated each time you click on the action button 
“Create masses from load case” or each time you perform a calculation. 

 
NB: 

- The self-weight of a structure is always taken into account automatically for a dynamic calculation. Even if there 
is no mass group linked to self weight. The mass of the self-weight is not displayed. 

- When specifying a load case but not using the action ‘Create masses from load case’ nothing will happen: no 
masses will be created. 

- When creating masses from loads, SCIA Engineer will use the acceleration of gravity specified on the Loads tab 
of the Project Data. By default this value is 9,81 m/s². 

- The mass remains unchanged after any modification or deletion of the original force. If the mass is intended to 
correspond to the new force, it is necessary to delete the mass and create it again. 

- The mass is generated only from vertical force components. 
- Free loads cannot be converted into masses. 

 
Step 3: masses 
 
When Mass Groups are created, Masses can be inputted on the structure. SCIA Engineer allows the input of: 
 

- Mass in node 
- Point mass on beam 
- Line masse on beam 

 
 

- Surface mass 
- Line mass on surface edge 
- Point mass on surface edge 

 
 
In this example, a mass of 500 kg will be inputted on the middle node of the beam using “Mass in node”. 
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The parameters Koeff mx, Koeff my and Koeff mz specify how much of the mass will participate in the vibration 
according to the global X, Y or Z axis.  
This can be used when calculating for example a chimney: when Koeff mx is put on 1 and Koeff my and Koeff mz are taken 
0, then the mass can only vibrate in the global X-direction so only eigenmodes in that direction will be obtained.  
Imx, Imy and Imz specify the moment of inertia around the global X, Y or Z axis. By default a nodal mass is concentrated 
so it has no inertia. When the mass represents a large machine, it is possible to input the moment of inertia of this 
machine. 
 
The nodal mass of 500 kg is inputted on the middle node of the beam: 
 

 
 
NB: 

- To display masses and mass labels, make a right click on the screen and go to  + « Set view parameters for all », 
and tab « Loads / Masses ». 

- Masses are Additional Data, which can be moved / copied to other entities. 
 
 
Step 4: mass matrix 
 
Next, the Mass groups can be combined within a Combination of Mass Groups.  
This is actually the mass matrix M which has been mentioned in the beginning of this chapter. 
 

 
 
The Combination of Mass Groups works in the same way as a linear Load Combination.  
A multiplication coefficient can be inputted for each Mass Group. This coefficient can be used when the mass of a 
structure changes during its lifetime. Consider for example a water tank. One Combination of Mass Groups can be created 
with a coefficient 1,00 to specify a full tank and another Combination of Mass Groups can be created with a coefficient 
0,50 to specify a tank, which is half-full. In this way, both cases can be calculated in one time. As stated in step 2: the self-
weight is automatically taken into account for each Combination of Mass Groups. 

  



CHAPTER 2 : FREE VIBRATION : EIGEN FREQUENCIES 

13 

Step 5: mesh setup 
 
After executing the previous steps, the calculation can already be started. However, as stated previously it can be required 
to refine the finite element mesh. 
This can be done though the main menu Tools / Calculation & Mesh / Mesh settings : 
 

 
 
For 1D members (beams) the Average number of tiles of 1D element can be augmented. In general, 5 to 10 tiles are 
sufficient for a dynamic calculation. When specifying a too high amount, the calculation will take a long time to complete. 
For 2D elements (plates & shells) the Average size of 2D element needs to be altered. 
 
In this example, due to the inserting of the middle node, there is already a mesh node there, so it is not required to have 
a denser Finite Element Mesh. This can be seen after mesh generation : 
 

 
 

 
 
 
Note: To display the numbering of finite elements, make a right click on the screen + « Set view parameters for all »: 

- Tab « Structure », in « Mesh », and tick « Draw mesh » on. 
- Tab « Labels », in « Mesh », tick « Display label & Elements 1D » on. 
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Step 6: solver setup 
 

Another important step before launching the calculation is to specify the amount of eigenmodes that need to be 
calculated and with which method they can be calculated.  
This can be done through the main menu Tools / Calculation & Mesh / Solver settings. 

 

 
 
 
By default, the Lanczos method is used. This method is set as default even in older projects where originally another 
method was used. In comparison with older methods, the Lanczos method is faster and more stable.  
As explained above, the number of eigen frequencies is dependent of the number of degrees of freedom of the structure 
which are on their turn dependent of the discretisation.  
 
 
In this example, only the mesh node located in the middle of the beam can vibrate vertically. Therefore only one 
eigenmode needs to be calculated. The Number of Frequencies can thus be lowered to 1. 
 
The modal mass matrix can be Diagonal or Consistent. 
In the first case (diagonal matrix), masses are affected to nodes. The matrix contains only components in diagonal and in 
translation (not in rotation). This method is faster but less precise. 
In the second case (consistent matrix), masses are distributed along the element with shape functions. The matrix 
contains components in translation (but no in diagonal) and also in rotation. This method is more precise but can lead to 
a more important calculation time. 
 

    
 

Diagonal matrix    Consistent matrix 
 
The option “Use IRS (Improved Reduced System) method” requires floors to be defined first, so this option cannot be 
used now. “Produce wall eigenmode results (needed for ECtools)” is only used if you are using the extra program ECtools 
to analyse seismic effects in masonry. 
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NB: When the number of frequencies is higher than the amount of degrees of freedom, a message will appear during the 
calculation, stating the calculation cannot be executed. The solution is to lower the number of frequencies to be 
calculated or to apply a mesh refinement so more degrees of freedom are created. 
 

 
 
 
Step 7: modal analysis 
 
The last step is to perform the Modal Analysis calculation through the main menu Tools / Calculation & Mesh / Calculate. 
 

 
 
After performing the calculation, the option Eigen Frequencies becomes available on the “Results” workstation: 

 
 
The preview shows the following result: 
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Step 8: calculation protocol 
 
According to this calculation, the natural frequency of the first mode is shown to be 6,32Hz. 
To view the results in more detail, it is possible to look at the Calculation protocol for the Eigen Frequency calculation: 

 
 

 
 

 
 
Let’s see more in detail about the results in the calculation protocol. 
 
Solution of the free vibration: 

- The model was divided in 2 finite elements, resulting in 3 mesh nodes.  
- Each node has 6 degrees of freedom (X, Y, Z, Rx, Ry, Rz) resulting in 18 equations.  
- The combination of mass groups for the results was CM1.  
- The number of frequencies set in the solver settings is 1.  
- The Lanczos method was used to perform this calculation.  
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The Sum of masses shows the amount of mass, which can vibrate for this Combination of Mass Groups (CM1). In this 
example, this is governed by the mass of 500 kg and the mass of the beam.  
 
The mass of the beam can be calculated as follows:  

- The beam is an IPE 200 with cross-section A= 0,00285 m² 
- The length of the beam is 6 m 
- The volumetric mass of S 235 is 7850 kg/m3. 

 
M = 0,00285 m² * 7850 kg/m3 = 22,3725 kg/m 

 
Now to find the total mass, we must assign the masses to the mesh nodes and take into account the vibrations which are 
possible: 
 

- For node 1: 1,5 m * 22,3725 kg/m = 33,5587 kg 

(1/4 of the beam mass goes to the left node) 
 

- For node 2:  3,0 m * 22,3725 kg/m + 500 kg = 67,1175 kg + 500 kg = 567,1175 kg 

(1/2 of the beam mass goes to the middle node along with the nodal mass in the node) 
 

- For node 3: 1,5 m * 22,3725 kg/m = 33,55875 kg 
(1/4 of the beam mass goes to the right node) 

 

 
 

 Direction X Direction Y Direction Z 

Node 1 Fixed (Frame XZ) Fixed 

Node 2 567,1175 kg (Frame XZ) 567,1175 kg 

Node 3 Fixed (Frame XZ) Fixed 

Total 634,2349 kg X 634,2349 kg 

Calculation Protocol 634,23 kg 0 kg 634,23 kg 
 
 
As you can see, the sum of masses in the calculation protocol corresponds to the sum of masses in all mesh nodes, 
taking into account the degrees of freedom in each node.  
 
It is clear that a denser mesh will provide a more accurate participation of the beam mass. 
 
The Modal Participation Factors show the amount of mass that is vibrating in a specific eigenmode as a percentage of 
the total mass. In this example Wzi/Wztot is equal to 1 which means that 100% of the mass is vibrating in the vertical 
direction for the first eigenmode. This means that in the other degrees of freedom, no mass will be displaced in the Z-
direction. 
 
The Wyi_R/Wytot_R is equal to 1 means that this first eigenmode the only eigenmode in which mass can rotate around the 
global Y-axis. 
 
As a side note, we must indicate that these results will strongly alter once we use a finer mesh. Since more nodes will 
add more degrees of freedom and thus more possible eigenmodes.  
These factors will be looked upon in more detail during the Seismic calculations. 
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Step 9: displacement of nodes 
 
The eigenmode can be visualized through Displacement of nodes. 
 

 
 

- « Selection » = All 
- « Type of loads » = Mass combinations 
- For each eigenmode, a specific mass combination can now be shown. 
- « Value » = Uz to view the displacement of nodes. 

 

 
 

 
 
 
The result is as expected, the inner node is vibrating. A denser mesh will provide a much better representation of the 
Eigenmode. It is important to bear in mind that a vibration is in two directions: in this case the eigenmode is shown 
moving up, however half a period later it will be moving down.  
 
Free vibration gives only the conception of structure properties and allows predicting the behaviour of the structure 
under time varying load conditions. In nature, each body prefers to remain in a standstill. If forced to move, it prefers the 
way requiring minimal energy consumption. These ways of motion are the eigenmodes.  
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The eigenmodes do not represent the actual deformation of the structure. They only show deformation that is "natural" 
for the structure. This is why the magnitudes of calculated displacements are dimensionless numbers. The numbers 
provided are ortho-normed, i.e. they have a particular relation to the masses in the structure. The absolute value of the 
individual numbers is not important. What matters is their mutual proportion. 
 
The vibration of the structure can be shown through by the main menu Result > Animation. 
Activating the option « Symmetry » will show the actual vibration in both directions. 
 

 
 
NB: using CTRL + right mouse button, the structure can be rotated in the “Animation” window. 
 
 
Manual calculation  
 
In order to check the results of SCIA Engineer, the eigen frequency of this structure is calculated by a manual calculation.  
Following reference [1], the circular frequency of a beam on two supports with a mass in the middle can be calculated as 
follows:  

ω² = 48.
EI

MLଷ
 

With: 
 ω: circular frequency 
 E:  modulus of Young 
 I:  moment of inertia of the beam 
 L:  length of the beam 
 M:  mass in the middle of the beam 
 
In this example: 
 E = 210000 N/mm² 
 Iy = 19430000 mm4 
 L = 6000 m 
 M = 500 kg 
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So we have: 

ωଶ =
48 ∗ 210000 N

mmଶൗ ∗ 19430000mmସ

500kg ∗ (6000mm)ଷ
= 1813,47 rad²

s²
ൗ  

 

ω = 42,58 rad
sൗ  

 

f =
ω

2π
= 6,78 Hz 

 
The result calculated by SCIA Engineer was 6,32 Hz. 
 
The difference in results is caused by two assumptions in the manual calculation: 
 

- The manual calculation does not take into account the self-weight of the beam. 

Since ω = ඥk m⁄ , a lower mass will lead to a higher ω and a higher f. 
 

- The manual calculation does not take into account shear deformation. 
A lower deformation leads to a higher stiffness k, a higher ω and a higher f. 

 
These two assumptions can also be implemented in the calculation model of SCIA Engineer: 
 

- In order not to take the self-weight into account, the volumetric mass of S 235 can be set to 1 kg/m3 in the 
material library: 

 

 
 

- To neglect the shear deformation, activate this option through the menu Tools / Calculation & Mesh / Solver 
settings: 
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- To obtain a correct and precise result, the mesh must also be refined to 10 finite elements. This can be done 
through the main menu Tools / Calculation & Mesh / Mesh settings. 

 

 
 
Now when the calculation is performed again, the following results are obtained : 
 

 
 
These results correspond exactly to the manual calculation.  
 
This example clearly shows the importance of checking the assumptions behind the applied theories. When comparing 
results between two calculations, always make sure the same assumptions/hypotheses are used. 
------------------------------------------------------------------------------------------------------------------------------------------------------------- 
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2.3 Frames 
 
In this paragraph, the Free Vibration calculation is illustrated for frame structures. The principles of the theory are 
applied in detail and verified by means of manual calculations. 
 
------------------------------------------------------------------------------------------------------------------------------------------------------------- 
Example 02-2.esa 

 

 
 
 
Step 1&2: functionality and mass group 
 
The activation of the Dynamics Functionality and the creation of a Mass Group are identical to the previous example. 
 
 
Step 3: masses 
 
When the Mass Group is created, the line masses of 500 kg/m can be inputted on the roof and floor beams of the frame. 
 

 
 

In this example, a two-storey frame is modelled. The members have 
cross-section HE240A and are manufactured in S 235 according to EC-
EN. 
 
 
The height of each storey is 4 m. 
The width of the frame is 5 m. 
The column bases are inputted as fixed supports. 
 
 
One static load case is created: self-weight. 
 
 
On the beams of the floor and roof level, a line mass of 500 kg/m will be 
introduced. 
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Note: to render the display of masses, go to ”Set view parameters for all” / « Loads / masses ». 
 
Step 4: mass matrix 
 
Next, a Combination of Mass Groups can be created. 
 

 
 

  



Advanced Training - Dynamics 

24 

Step 5: mesh setup 
 
To obtain precise results for the dynamics calculation, the Finite Element Mesh is refined.  
This can be done through Calculation & Mesh / Mesh Settings. 

 
 
The Average number of tiles of 1D element is set to 10 to obtain a good distribution of the line masses and the mass of 
the members. 
 
Step 6: solver setup 
 
The last step before launching the calculation is setting the amount of eigenmodes to be calculated. The default value in 
the menu Tools / Calculation & Mesh /  Solver Settings is 4. This is sufficient for this example. 
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Step 7: modal analysis 
 
The Free Vibration calculation can now be executed through the main menu Tools / Calculation & Mesh / Calculate.  
The following results are obtained: 
 

 
 
As stated in the previous example, using Deformation of Nodes, the Deformed Mesh can be shown to view the 
eigenmodes: 
 

      
Eigenmode 1: f = 2,90Hz     Eigenmode 2: f = 9,58Hz 

 

      
Eigenmode 3: f = 14,64Hz     Eigenmode 4: f = 17,15Hz 
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The Calculation Protocol for the Eigen Frequency calculation shows the following: 
 

 
 
 
The Sum of masses shows the amount of mass, which can vibrate for this Mass combination. In this example, this is 
governed by the line masses of 500 kg/m and the mass of the members.  
 
This value can be calculated as follows: 

-    The members are of type HE240A with cross-section A= 0,00768 m²  
-    The volumetric mass of S 235 is 7850 kg/m³  
-    The total length of the members is 4 x 4 m + 2 x 5 m = 26 m  

 
However, as stated in 2.2 the masses are guided to the mesh nodes. The Finite Element Mesh was refined to 10 1D 
elements per member.  
 
This implies that for the two lower columns, half the mass of a 1D element is guided to a support and does not take part 
in the free vibration: 

 
- The length of the columns is 4 m  
- The length of a 1D element is de 4 m / 10 = 0,4 m 
- The length of half a 1D element is 0,4 m / 2 = 0,2 m 

o The total length of the members taken into account for the mass is: 
26 m – 0,2 m – 0,2 m = 25,6 m 

o Total member mass = 0,00768 m² x 25,6 m x 7850 kg/m³ = 1543,37 kg 
 
The mass is added to the line masses of 500 kg/m 

o Vibrating mass = 2 x 500 kg/m x 5m + 1543,37 kg = 6543,37 kg 
 

The Modal Participation Factors show the amount of mass that is vibrating in a specific eigenmode as a percentage of the 
total mass. 
 
For Eigenmode 1: 86% of the total mass is vibrating in the X-direction  
For Eigenmode 2: 11% of the total mass is vibrating in the X-direction  
For Eigenmode 3: 16% of the total mass is vibrating in the Z-direction  
For Eigenmode 4: 54% of the total mass is vibrating in the Z-direction  
 
The lower row shows the total percentage when these four modes are combined: 97% is taken into account for the X-
direction and 69% for the Z-direction. 
 
These factors will be looked upon in more detail during the Seismic calculations in Chapter 4. For a seismic calculation, it 
is required that sufficient eigenmodes are included in the calculation so that at least 90% of the total mass is being taken 
into account [7]. 
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Manual calculation 
 
In order to check the results of SCIA Engineer, the lowest eigen frequency, or natural frequency of this structure is 
calculated by a manual calculation.  
The method used here is described in the literature as Rayleigh’s Energy Method. [1], [13].  
In this method, the structure is idealized as a cantilever beam with lumped masses at each floor level: 
 

 
 
The structure is then loaded with a set of linearly increasing horizontal loads on each floor level. Due to this loading, the 
structure will deform and thus the rigidity of the system is known. The eigen frequency of the structure can then be 
approximately calculated as follows: 
 

f =
1

2π
. ඨ

∑ F୧. d୧
୬
୧ୀଵ

∑ M୧. d୧
ଶ୬

୧ୀଵ

 

(2.12) 
With: 

n: number of floors 
Fi: horizontal force acting on floor level i 
di: horizontal deformation of floor level i 
Mi: idealized mass of floor level i 

 
The analogy between this formula and ω = ඥk/m can clearly be seen. 
 
To use this formula, the frame needs to be idealized to a cantilever: 
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The mass of the lower part of the structure is idealized to the support of the cantilever so it takes no part in the vibration.  
 
The mass M1 can be calculated as follows:  

0,00768 m² x (5 + 4 + 4) m x 7850 kg/m³ + 500 kg/m x 5 m = 3283,74 kg  
 
The mass M2 can be calculated as follows:  

0,00768 m² x (5 + 4) m x 7850 kg/m³ + 50 kg/m x 5 m = 3042,5 9kg  
 

In order to calculate the horizontal deformations di of each floor level due to a linearly increasing load Fi, a static load 
case is calculated with SCIA Engineer consisting of loads of 100 kN and 200 kN. The following results are obtained for the 
nodal deformations: 

 

 
 

o F1 = 100 kN = 100000 N => d1 = 94,7 mm = 0,0947 m 
o F2 = 200 kN = 200000 N => d2 = 197,4 mm = 0,1974 m 

 
Applying formula (2.12): 
 

f =
1

2π
. ඨ

100000𝑁 ∗ 0,0947𝑚 + 200000𝑁 ∗ 0,1974𝑚

3283,74𝑘𝑔 ∗ (0,0947)ଶ + 3042,59𝑘𝑔 ∗ (0,1974𝑚)²
= 2,88 Hz 

 
This result corresponds to the 2,90 Hz calculated by SCIA Engineer.  
------------------------------------------------------------------------------------------------------------------------------------------------ 
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2.4 Combining mass groups 
 
Mass Groups are combined in a Combination of Mass Groups.  
 
According to Eurocode 8 [7] article 3.2.4, all gravity loads appearing in the following combination of actions need to be 
taken into account for an eigenmode calculation: 

෍ G୩ + ෍ ψ୉,୧. Q୩,୧ 

(2.13) 
Where: 
 Gk: characteristic value of the permanent load 
 Qk,j: characteristic value of the variable load  i 
 ψ୉,୧: combination coefficient for load i = φ. ψଶ,୧ 
 
The combination coefficient ψ୉,୧ takes into account the likelihood of the variable loads not being present over the entire 
structure during the occurrence of an earthquake.  
 
According to Eurocode 8 [7] article 4.2.4, ψ୉,୧ should be calculated in the following way: 

ψ୉,୧ = φ. ψଶ୧ 
 

 
 
For example, if a first mass group MG1 represents the mass of permanent loads and a second mass group MG2 represents 
the mass of a variable load case with a Category B imposed load and independently occupied storeys, then φ is taken as 
0,5 and ψଶ,୧ as 0,3.  
This gives a value of 0,15 for ψ୉,୧. 
The Combination of Mass Groups CM1 can then be formulated as 1,00 MG1 + 0,15 MG2. 
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------------------------------------------------------------------------------------------------------------------------------------------------ 
Example 02-3.esa 
 
In this example an office building is modelled as a frame. The office is manufactured in C30/37 according to EC-EN. The 
building has four storeys with a storey height of 4 m. In horizontal direction, the frame is made up of four columns with 
a distance of 6 m between them. In the direction out of plane, the frames are spaced  
5 m. The column bases are inputted as fixed supports. 
 
The members of the frame have following cross-sections:  

- Columns: Rectangular 300 x 450  
- Floor Beams: Rectangular 250 x 500  
- Roof Beams: Rectangular 150 x 300  

 
The vertical loads acting on the structure are:  

- The self-weight of the concrete members  
- The weight of the floors: 5 kN/m²  
- The weight of the roof: 2 kN/m²  
- A category B (Office) imposed load of 3 kN/m²  

 
 

 
 
 

This gives 3 static load cases: 
 

- LC1: self-weight 
- LC2: permanent load: 25 kN/m on the floor beams, 10 kN/m on the roof beams 
- LC3: variable load: 15 kN/m on the floor beams 
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Step 1: functionality 
 
The first step in the Dynamic calculation is to activate the functionality Dynamics on the Functionality tab in the Project 
Data. 
 
 
Step 2 & 3: mass groups 
 
The second step is to create Mass Groups, the third step the creation of Masses. 
 
Three Mass Groups are created, one for the dead load and one for each static load case.  
 
For the Mass Group MG2, the load case LC2 is chosen: the weight of the floors and roof. Using the action “Create masses 
from load case”, you can automatically generate masses from the already inputted loads which remain linked to the loads. 
 

 
 
 
In the same way, the Mass Group MG2 is created in which masses are automatically created from load case LC3: the 
imposed load. 
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NB: 
As stated in the first example: When creating masses from loads, SCIA Engineer will use the acceleration of gravity 
specified on the Loads tab of the Project Data. By default it is 9,81 m/s².  

 
The mass, which has been created from a load case, can be automatically regenerated when the load case is modified. 
To link the mass to a load case, you have to activate the option “Keep masses up-to-date with loads”. 
 
The contain of the two mass groups can be visualized. 
 
Mass group MG2: 
 

 
 
Floor mass: 

25000 N
mൗ

9,81 m
s²ൗ

= 2548,4
kg

mൗ  

 
Roof mass: 

10000 N
mൗ

9,81 m
s²ൗ

= 1019,4
kg

mൗ  
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Mass groups MG3: 
 

 
 
 
Mass of imposed load: 

15000 N
mൗ

9,81 m
s²ൗ

= 1529,1
kg

mൗ  

 
 
Step 4: mass matrix 
 
Both Mass Groups can now be combined in a Combination of Mass Groups.  
According to Eurocode 8 [7] article 3.2.4, all gravity loads appearing in the following combination of actions need to be 
taken into account for an eigenmode calculation: 
 

෍ G୩ + ෍ ψ୉,୧. Q୩,୧ 

(2.14) 
 
With: 
 Gk:  characteristic value of the permanent load 
 Qk,j:  characteristic value of the variable load i 
 ψ୉,୧:  combination coefficient for load i = φ. ψଶ,୧ 
 
The combination coefficient ψ୉,୧ consider the probability that variable loads may not be present on the whole structure 
when the earthquake happens. 
 
For this example, with a Category B imposed load and independently occupied storeys,  is taken as 0,5 and 2,i as 0,3. 
This gives a value of 0,15 for E,i  
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The Combination of Mass Groups CM1 can then be formulated as 1,00 MG1 + 0,15 MG2. 
 

 
 
 
Step 5: mesh setup 
 
To obtain precise results for the dynamics calculation, the Finite Element Mesh is refined. This can be done through the 
main menu Tools / Calculation & Mesh / Mesh settings. 
 

 
 
The Average number of tiles of 1D element is set to 10 to obtain a good distribution of the line masses and the mass of 
the members. 
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Step 6: solver setup 
 
The last step before launching the calculation is setting the amount of eigenmodes to be calculated. The default value in 
the main menu Tools / Calculation & Mesh / Solver Settings is 4. This is sufficient for this example. 
 

 
 
 
Step 7: calculation 
 
The Free Vibration calculation can now be executed through the main menu Tools / Calculation & Mesh / Calculate. 
 
The following results are obtained: 
 

 
 
With corresponding eigenmodes: 
 

   
Eigenmode 1: f = 1,27 Hz    Eigenmode 2: f = 3,69 Hz 
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Eigenmode 3: f = 5,99 Hz    Eigenmode 4: f = 8,23 Hz 

 
 
 
Step 8: calculation protocol 
 
The Calculation Protocol for the Eigen Frequency calculation shows the following: 
 

 
 
The Sum of masses can be calculated as follows: 
 

- According to the Bill of Material, the self-weight of the frame, is 40500 kg: 
 

 
 

However, for the four lower columns, half the mass of a 1D element is guided to a support and does not take 
part in the free vibration. 
 

- The length of the columns is 4 m  
- Since 10 1D elements per member were used, the length of a 1D element is 4 m / 10 = 0,4 m 
- The length of half a 1D element is 0,4 m / 2 = 0,2 m 
 
- The columns have a cross-section of 0,135 m² and a volumetric masse of 2500 kg/m³ 

o The mass of the columns not taken into account is: 
4 x 0,135 m² x 0,2 m x 2500 kg/m³ = 270 kg 

o The mass of the self-weight taken into account is: 40500 kg – 270 kg = 40230 kg 
 

- For MG1 the mass of the floors is 9 x 2548,42 kg/m x 6 m = 137614,68 kg 
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- For MG1 the mass of the roof is 3 x 1019,37 kg/m x 6 m = 18348,66 kg 
 

- For MG2 the mass of the floors is 9 x 1529,05 kg/m x 6 m = 82568,7 kg 
However only 15% was taken into account => 0,15 x 82568,7 kg = 12385,31 kg 
 

- Vibrating mass = 40230 kg + 137614,68 kg + 18348,66 kg + 12385,31 kg 
  = 208578,65 kg 

 
 

Manual calculation 
 
In order to check the results of SCIA Engineer, the lowest eigen frequency of this structure is calculated by means of the 
Rayleigh Method.  
As specified in the previous example, the frame is idealized as a cantilever: 
 

 
 
The masses M1, M2 and M3 can be calculated as follows: 

 
- Self-weight of the three floor beams and four columns: 

o 3 x 0,125 m² x 2500 kg/m³ x 6 m = 5625 kg 
o 4 x 0,135 m² x 2500 kg/m³ x 4 m = 5400 kg 
o 5625 kg + 5400 kg = 11025 kg 

 
- Floor weight of mass group MG1: 

o 3 x 2548,42 kg/m x 6 m = 45871,56 kg 
 

- Weight of imposed load of mass group MG2 (15%) 
o 0,15 x 3 x 1529,05 kg/m x 6 m = 4128,44 kg 

 
- Total: 11025 kg + 45871,56 kg + 4128,44 kg = 61024,995 kg 

 
The mass M4 can be calculated as follows: 

 
- Self-weight of three roof beams and half of four columns: 

o 3 x 0,045 m² x 2500 kg/m³ x 6m = 2025 kg 
o 0,5 x 4 x 0,135 m² x 2500 kg/m³ x 4m = 2700 kg 
o 2025 kg + 2700 kg = 4725 kg 
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- Roof weight of mass group MG1: 
o 3 x 1019,37 kg/m x 6 m = 18348,66 kg 

 
- Total: 4725 kg + 18348,66 kg = 23073,66 kg 

 
In order to calculate the horizontal deformations di of each floor level due to a linearly increasing load Fi, a static load 
case is calculated with SCIA Engineer consisting of loads of 100 kN, 200 kN, 300 kN and 400 kN. The following results are 
obtained for the nodal deformations: 
 

 
 
 

o F1 = 100 kN = 100000 N => d1 = 32,3 mm = 0,0323 m 
o F2 = 200 kN = 200000 N => d2 = 76,0 mm = 0,0760 m 
o F2 = 300 kN = 300000 N => d2 = 113,1 mm = 0,1131 m 
o F2 = 400 kN = 400000 N => d2 = 148,0 mm = 0,1480 m 

 
 
Applying formula (2.12): 
 

f =
1

2π
. ඨ

100000N ∗ 0,0323m + 200000N ∗ 0,076m + 300000N ∗ 0,1131m + 400000N ∗ 0,148m

61024,99kg ∙ (0,032)ଶ + 61024,99kg ∙ (0,076m)ଶ + 61024,99kg ∙ (0; 113m)ଶ + 23073,66kg ∙ (0,148m)²
 

 
f = 1,27 Hz 

 
This result corresponds to the 1,27 Hz calculated by SCIA Engineer. 
------------------------------------------------------------------------------------------------------------------------------------------------ 
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2.5 Slabs 
 
 
This paragraph illustrates the procedure for the Free Vibration calculation of slabs. The applied method is entirely the 
same as for frames. This is shown in the following example. 
 
 
------------------------------------------------------------------------------------------------------------------------------------------------ 
Example 02-4.esa 
 
In this example, a multi-span rectangular slab is modelled. The slab has a length and width of 6 m. The slab has a thickness 
of 0,06 m and is manufactured in S 235 according to EC-EN. On two sides the slab is simply supported, on the other two, 
the slab is free. In the middle of the slab, perpendicular on both simply supported edges, a line support is introduced.  
One static load case is created: the self-weight of the slab. 
 

 
 
 
Step 1: functionality 
 
The first step in the Dynamic calculation is to activate the functionality Dynamics on the Functionality tab in the Project 
Data. 
 
 
Step 2 & 3: mass group 
 
The second step is to create a Mass Group 
 

 
 
Since the Free Vibration calculation will be executed for the self-weight of the slab, no additional masses need to be 
inputted. 
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Step 4: mass matrix 
 
Next, a Combination of Mass Groups can be created. 

 

 
 

 
Step 5: mesh setup 
 
To obtain precise results for the dynamics calculation, the Finite Element Mesh is refined. Analogous as for frames, this 
can be done through the main menu Tools / Calculation & Mesh / Mesh settings. 
 

 
 
The Average size of 2D elements is set to 0,25 m. 
 
 
 
Step 6: solver setup 
 
The last step before launching the calculation is setting the amount of eigenmodes to be calculated. The default value in 
the main menu Tools / Calculation & Mesh / Solver settings is 4. This is sufficient for this example. 
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Step 7: modal analysis 
 
The Free Vibration calculation can now be executed through the main menu Tools / Calculation & Mesh / Calculate. 

 
The following results are obtained: 
 

 
 
 
The same way as for frames, the Eigenmodes can be visualized through Deformation of nodes now under 2D Members. 
The Deformed structure for value Uz shows the following: 
 
 

  
 

 
Eigenmode 1: f = 6,68Hz    Eigenmode 2: f = 9,43Hz 
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Eigenmode 3: f = 19,37Hz    Eigenmode 4: f = 21,00Hz 
 
 
 
NB: 
- With the option Displacement 3D, you display the deformation of both 2D and 1D elements. This allows seeing the 

complete eigenmode for a structure containing both element types i.e. General XYZ projects.  
- To generate all eigenmodes quickly, this document can be used: the picture of one eigenmode can be set as a nested 

table for the Combinations of Mass Groups : 
 

 
 

 
 
This way, all eigenmodes are generated automatically. 

 
 
 

Step 8: calculation protocol 
 
The Calculation Protocol for the Eigen Frequency calculation shows that the following “Sum of masses” is accounted for: 

 
 
This value can be calculated as follows: 
 

- The total weight of the slabs is 6 m x 6 m x 0,06 m x 7850 kg/m³ = 16956 kg 
- Half of the mass of the elements near the two externally supported edges is carried to the supports and does 

not participate in the vibration. Since the mesh size was set to 0,25 m, half the size of a 2D element is 0,125 m. 
o 2 x 6 m x 0,125 m x 0,06 m x 7850 kg/m³ = 706,5 kg 

 
- The same applies for the internal edge, however the mass of the two elements on the start and end nodes has 

already been taken into account in the above calculation for the externally supported edges. This leaves a length 
of 6 m – 0,125 m – 0,125 m = 5,75 m. 
The following figure illustrates this length: 

o 2 x 5,75 m x 0,125 m x 0,06 m x 7850 kg/m³ = 677,06 kg 



CHAPTER 2 : FREE VIBRATION : EIGEN FREQUENCIES 

43 

 

 
 

- The total mass taken into account for the « Free Vibration » calculation is: 
o 16956 kg – 706,5 – 677,06 = 15572,44 kg 

 
 
 
 
Manual calculation 
 
In order to check the results of SCIA Engineer, the eigen frequencies of the slab are calculated by a manual calculation.  
The method used here is described in reference [14] In this reference; the eigen frequency of a multi-span slab is 
expressed in terms of a non-dimensional parameter: 
 

λ =
ωL²

π²
. ඨ

ρh

D
 

(2.15) 
 
Where: 
 ω:  circular frequency 
 L:  distance between the two simply supported external edges 
 ρ:  density of the slab material 
 h:  slab thickness 
 D:  flexural rigidity of the slab 

D =  
Ehଷ

12. (1 − υଶ)
 

(2.16) 
 E: modulus of Young 
 υ: Poisson’s ratio 

 
In this example, the material properties are the following: 
 L = 6 m 

ρ = 7850 kg/m3  
 h = 0,06 m 
 E = 210000 N/mm² = 2,1.e11 N/m² 
 υ = 0,3 
 

D =  
ቀ2,1eଵଵ N

m²ൗ ቁ ∗ (0,06m)ଷ

12 ∗ (1 − 0,3²)
= 4153846,15N. m 
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The values for λ for the first four modes, for a slab with two edges simply supported and two edges free, a h/L ratio of 
0,01 and an internal edge on position 0,5L are given in reference [14]: 
 
 Mode 1: λ = 1,6309 

Mode 2: λ = 2,3050 
Mode 3: λ = 4,7253 
Mode 4: λ = 5,1271 

 
Using these parameters in formula (2.15), the circular frequencies can be calculated: 
 
 Mode 1: ω = 41,99rad/s  => f = 6,68Hz 

Mode 2: ω = 59,34rad/s  => f = 9,45Hz 
Mode 3: ω = 121,66rad/s => f = 19,36Hz 
Mode 4: ω = 132rad/s  => f = 21,01Hz 

 
The results correspond perfectly to the results calculated by SCIA Engineer: 
 

Mode 1: f = 6,68Hz 
Mode 2: f = 9,44Hz 
Mode 3: f = 19,39Hz 
Mode 4: f = 21,05Hz 

 
------------------------------------------------------------------------------------------------------------------------------------------------ 
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2.6 Floor of a concrete building 
 
 
The last paragraph of this chapter illustrates the procedure for the Free Vibration calculation of a floor of a multi-storey 
concrete building. This is shown in the following example. 
 
 
------------------------------------------------------------------------------------------------------------------------------------------------------------- 
Example 02-5.esa 
 
In this example, a multi-storey concrete building was modeled. It consists of a first floor, three upper floors and a flat 
roof. 

 
 

 
 
 
 

Several load cases are created : 
 

- Self-weight. 

 
- Other permanent loads, which are -2,00kN/m² on all floors of all storeys and -1,50kN/m² on the roof slab. 

 
- Live loads : 

o On all floors of all storeys, in the office areas (cat B) : -2,50kN/m² 
o On the office area of storeys 1 and 2 (cat C): -5,00kN/m² 
o On the roof slab (cat H) : -0,6kN/m² 
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The two office are located on storeys 1 and 2, and are in the corner non present on the floor 3: 
 

 
 
The study will focus on the small office floor of the 2nd floor (in yellow on the images above). 
 
 
Step 1 : functionality 
 
The first step in dynamic calculation is to activate the "Dynamic" functionality in the “Functionality” tab of the "Project 
settings". 
 
 
Step 2 & 3 : mass groups 
 
Then, you have to create the “Mass groups” corresponding to the 5 local cases. 
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Step 4 : mass matrix 
 
A « combination of mass groups » has to be now created. 

 

 
 
 
 
Step 5 : mesh setup 
 
To obtain accurate results in the case of dynamic analysis, the mesh must be refined. 
As before, this can be achieved via the menu Tools / Calculation and mesh / Mesh setup. 
 
 

 
 
 
The average size of 2D elements is taken equal to 0,50m. 
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Step 6 : solver setup 
 
Before starting the analysis, you must define the number of eigenmodes to be calculated via the menu Tools / Calculation 
and Mesh / Solver setup. Here, the number of eigenmodes is defined to 100.  
 

 
 
 
Since we are looking for the vibration mode of a floor, therefore a vertical vibration, we can click on “Translation along 
global Z axis” only in the “Mass components in analysis”. 
 
 
 
Step 7 : modal analysis 
 
The eigenfrequency calculation can be run via the menu Tools / Calculation and Mesh / Calculate. 

 
The « Calculation protocol » for the calculation of “Eigenfrequencies » shows that the sum of the following masses is 
taken into account : 
 

 
 
The following results are obtained : 
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It is noted that modes exciting the vertical structure the most are modes 2 (15,45%), 3 (14,22%), 13 (6,44%), 5 (6,05%), 
43 (5,13%) et 1 (2,45%) … for a total of 76%. 
 
 
NB : Results can be displayed in the « Results table ». By clicking on the head of the « Wzi/Wztot » column, results are 
displayed in ascending or descending order : 
 

  
 
 
As for the frames or the slab, the eigenmodes can be visualized through the « 3D displacements » for the surfaces. Here 
it is necessary to visually search which mode excites the studied floor the most (the indentation in the calculation report 
can here have a major interest to obtain the complete visualization in all modes very quickly). Among the main modes 
mentioned above : 
 

- The mode 13 with a frequency of 10,08Hz excites a little bit the part of the studied floor : 
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- Also the mode 5 with a frequency of 9,13Hz : 
 

 
 
 
 

- The mode 43 with a frequency of 14,27Hz : 
 

 
 
 

- But it is especially the mode 1 with a frequency of 6,68Hz that causes the biggest vibration of this part of 
the floor : 

 

 
 
 
 
The total of the excited masses in vertical is 76%. It is not indicated in the standard any particular limits, but it is always 
better to approach 100%. One solution might be to use property or model modifiers. 
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Model modifiers impact only the case on which the modifier group is applied. This may be interesting to use it if two 
analyses need to be performed for example: seismic and vibration (floor). The modifier can then be applied to the mass 
combination related to the vibration analysis only. 
 
Property modifiers impact all cases. Let's test by putting property modifiers with zero mass, on all 1D elements of the 
project, on all walls, and on all slabs other than the studied floor. 
 
 

 
 

 
 

The sum of the masses taken into account is much smaller than without the use of modifiers : 
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And the mass participation results slightly differ : 
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We note that the modes that excite the vertical structure the most are a little bit different from without modifiers : modes 
5 (13,9%), 2 (8,17%), 21 (5,69%), 1 (5,88%) et 16 (4,25%) … for a total of 88%. In this example, only 12% of total mass 
participation is gained, but in other examples, the jump to 100% might be more pronounced. 
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CHAPTER 3 : SPECTRAL ANALYSIS : SEISMIC LOAD 
 
 
In this chapter, the seismic analysis in SCIA Engineer is explained in detail. 

 
During an earthquake, the subsoil bearing a structure moves. The structure tries to follow this movement and as a result, 
the masses in the structure begin to move. Subsequently, these masses subject the structure to inertial forces. When 
these forces are determined, they can be applied to the structure and thus, like with the harmonic load, the dynamic 
calculation is transformed to an equivalent static.  

 
In the first part of the chapter, the theory will be explained. The theory will then be illustrated by examples, which are 
again verified by manual calculations. 
 
 

3.1 Theory 
 

 General 
 
Analogous to the previous chapters, before examining the dynamic analysis of a complex structure, the Seismic analysis 
of a SDOF (Single Degree Of Freedom) system is regarded in detail. A complete overview can be found in references [2], 
[3].  
 
Generally, this paragraph deals with the analysis of structures that are submitted to a harmonic ground motion. The most 
important harmonic ground motions are earthquakes (seismic loads), but this calculation method can also be applied to 
the analysis of underground or surface explosions and vibrations generated by heavy traffic or machinery.  
 
The following figure illustrates the displacement of a system that is submitted to a ground motion: 
 

 
 
Where: 

 yg(t) is the ground displacement 
 y(t) is the total displacement of the mass 
 u(t) is the relative displacement of the mass 

 
The total displacement can thus be expressed as follows: 

y(t) = y୥(t) + u(t) 
(4.1) 

 
Since yg is assumed to be harmonic, it can be written as: 

y୥(t) = Y୥. sin (ν. t) 
(4.2) 
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The equilibrium equation of motion can now be written as: 

m. ÿ(t) + c. u̇(t) + k. u(t) = 0 
(4.3) 

 
Since the inertia force is related to the total displacement (y) of the mass and the damping and spring reactions are 
related to the relative displacements (u) of the mass. 
 
When (4.1) is substituted in (4.3), the following is obtained: 

 

m. ቀü(t) + y୥̈(t)ቁ + c. u̇(t) + k. u(t) = 0 
or 

m. ü(t) + c. u̇(t) + k. u(t) = −m. y୥(t)̈  
(4.4) 

 
This equation is known as the General Seismic Equation of Motion. This equation can be used to illustrate the behaviour 
of structures that are loaded with a seismic load. 
 
Substituting (4.2) in (4.4) gives the following: 

m. ü(t) + c. u̇(t) + k. u(t) = −m. Y୥. 𝜈ଶ. sin (ν. t) 
 

This equation can be compared with equation (3.2) of the previous chapter. As a conclusion, the ground motion can also 
be replaced by an external harmonic force with amplitude: 

 
F = −m. Y୥. 𝜈ଶ 

 
But an earthquake will be a combination of many harmonic loads acting on different frequencies simultaneously. The 
load represented in these harmonic loads is the acceleration of the structure multiplied with the mass of the structure. 
The frequencies of these harmonic loads are the frequencies on which this acceleration occurs in the earthquake. 
 
The combination of all the accelerations over the different frequencies in the earthquake will be given by a response 
spectrum. A response spectrum is therefore nothing more than a list of accelerations and the frequencies on which they 
occur. 
 
 

 Response spectra 
 
When a structure has to be designed for earthquakes, in most cases spectral analysis is used because the earthquake 
loading is often described as a response spectrum. This response spectrum can either be a displacement, velocity or 
acceleration spectrum.  
 
The relation of an earthquake (given by an acceleration time-history) and the corresponding displacement response 
spectrum is given by [16]: 
 

Sୢ(ξ, ω) =
1

ω
. ൤න y୥̈(τ). eିஞன(୘ିத). sin(ω. (T − τ)). dτ൨

୫ୟ୶

 

(4.5) 
Where: 
 y୥̈(τ):  the ground acceleration in function of time 
 ξ:  the damping factor 
 T: the period 2π/ω 
 
Instead of the displacement response spectrum Sd, also the velocity response spectrum Sv or the acceleration response 
spectrum Sa can be used. These three spectra are related by ω: 

 
Sୟ = ω. S୴ = ωଶ. sୢ 

(4.6) 
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In Eurocode 8 [7] the earthquake motion at a given point on the surface is represented by an elastic ground acceleration 
response spectrum or “Elastic Response Spectrum Se” This spectrum is illustrated in the following figure: 
 

 
 
A commonly used way of describing an earthquake magnitude is the so-called Richter scale. Annex A gives a relation 
between the magnitude on the Richter scale and the Peak Ground Acceleration. 
 
 
 

 Spectral analysis 
 

For MDOF (Multiple Degree Of Freedom) systems, equation (4.4) can be written in matrix notation as a set of coupled 
differential equations: 

M. Ü + C. U̇ + KU = −M. {l}. Y୥̈ 
(4.7) 

 
The matrix {1} is used to indicate the direction of the earthquake. For example, for a two-dimensional structure (three 
degrees of freedom) with an earthquake that acts in the x-direction, the matrix is a sequence like {1,0,0,1,0,0,1,0,0,…}. 
 
The resulting set of coupled differential equations is reduced to a set of uncoupled differential equation by a 
transformation U = Z.Q, where Z is a subset of Φ (the eigenvectors) and Q is a vector, which is time-dependent. 

 
M. Z. Q̈ + C. Z. Q̇ + K. Z. Q = −M. {l}. Y୥̈ 

Or 
𝑍் . M. Z. Q̈ + 𝑍் . C. Z. Q̇ + 𝑍் . K. Z. Q = −𝑍் . M. {l}. Y୥̈ 

 
This can be simplified to a set of uncoupled differential equations: 
 

Q̈ + 𝐶∗. Q̇ + Ωଶ. Q = −𝑍் . M. {l}. Y୥̈ 
(4.8) 

where C* is a diagonal matrix containing terms like 2. ω୧. ξ୧ 
 
Each equation j has a solution of the form: 

Q୨ = −Z୘. M. {l}.
1

ω
. න Y୥̈(τ). eିஞன౟(୘ିத). sin ቀω୨. (T − τ)ቁ

୲

଴

. dτ 

(4.9) 
 
To obtain the maximum displacements, the displacement response spectrum Sd of equation (4.5) can be substituted: 

Q୨,୫ୟ୶ = −Z୘. M. {l}. Sୢ൫ξ୨, ω୨൯ 
(4.10) 

And: 
U୨,୫ୟ୶ = −Z. Z୘. M. {l}. Sୢ൫ξ୨, ω୨൯ 

Or 
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U୨,୫ୟ୶ = −Z. Ψ. Sୢ൫ξ୨, ω୨൯ 
(4.11) 

Where Ψ: modal participation factor: 
Ψ = Z୘. M. {l} 

 
 

3.2 Seismic load in SCIA Engineer 
 
 
 

 Response spectra 
 
 
In SCIA Engineer, a Seismic Load can be inputted after creating a Combination of Mass Groups. This implies that the steps 
used to perform a Free Vibration calculation still apply here and are expanded by the properties of the Seismic Load. 
 
As specified in the theory, Eurocode 8 [7] specifies an Elastic Response Spectrum Se. For design purposes, this spectrum 
is reduced to a Design Spectrum Sd. This Design Spectrum is dependent on several parameters: the Ground Type, the 
Ground Acceleration, the Behaviour Factor and the Damping.  
 
When defining a spectrum in SCIA Engineer, the spectrum can be defined either by combinations of Frequencies & 
accelerations, or Periods & accelerations, or by simply inputting the parameters that define this spectrum according to 
Eurocode 8. If the user wishes to compose the spectrum based on the parameters in Eurocode 8, then he will have the 
next input window: 
 

 
 
For a detailed description of these parameters, reference is made to Eurocode 8 [7]. The following is a brief overview for 
understanding the input needed for SCIA Engineer. 
 

- Damping: The Design Spectra of Eurocode 8 are defined for a damping ratio of 5%. If the structure has another 
damping ratio, the spectrum has to be adapted with a damping correction factor . This will be looked upon in 
more detail in Chapter 11. 
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- Ground acceleration: The ground acceleration ag or the coefficient of acceleration  can be calculated by means 
of an importance factor. 
 

 The ground acceleration ag can be calculated from the importance factor and the peak ground 
acceleration (PGA) agr: 

a୥ = γ୪ ∗ a୥୰ 
(4.12) 

 The coefficient of acceleration 𝜶 is defined as the ground acceleration divided by the acceleration of 
gravity g: 

α =
a୥

g
 

(4.13) 
 The importance factor is derived from the return period of the seismic action and the importance of the 

structure. An importance factor γ୪ equal to 1 is assigned to the reference return period. 
 The peak ground acceleration (PGA) agr can be found from the seismic zones in which a country is divided. 

By definition, the seismic hazard within each zone is assumed to be constant. The hazard is described by 
a single parameter: the peak ground acceleration (PGA) agr. The following figure illustrates the division in 
seismic zones for the map of Belgium [9]: 

 

    
 

Zones 0 1 2 3 4 

Agr (for A ground) 
in m/s² 

/ 0,39 0,59 0,78 0,98 

 
 

- Behaviour factor (EN1998, 3.2.2.5): To avoid explicit inelastic structural analysis in design, the capacity of the 
structure to dissipate energy, mainly through ductile behaviour of its elements, is taken into account by performing 
an elastic analysis based on a response spectrum reduced with respect to the elastic one. This reduction is 
accomplished by introducing the behaviour factor q. 
 

 For the vertical component of the seismic action a behaviour factor q up to 1,5 should generally be 
adopted for all materials and structural systems. The adoption of values of q greater than 1,5 in the 
vertical direction should be justified through proper analysis.  

 The values of the behaviour factor q, which also account for the influence of the viscous damping being 
different from 5%, are given for various materials and structural systems according to the relevant 
ductility classes in the various Parts of EN 1998. The value of the behaviour factor q may be different in 
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different horizontal directions of the structure, although the ductility classification shall be the same in 
all directions.  

 
- Beta (𝛃): the coefficient corresponds to the lowest limit (asymptote) for the horizontal design spectrum. The 
recommended value for (β) is 0,2 but can be overruled by the relevant national annex. 
If you plot the spectrum as acceleration to frequency, then the most left value would be the lower bound factor 
β multiplied with the ground acceleration. 

 

 
 
- S, Tb, Tc, Td manually?: If you set this to “No”, then the values to compose the spectrum are calculated 
automatically from the other properties in this window. 

 
-  Ground type: the Ground Type is dependent on the soil characteristics and is specified by letters A to E. 

 

 
 

- Type of spectrum: If the earthquakes that contribute most to the seismic hazard defined for the site for the 
purpose of probabilistic hazard assessment have a surface-wave magnitude, Ms, not greater than 5,5, it is 

𝛃 ∗ 𝐚𝐠 = 𝟎, 𝟐 ∗ 𝟎, 𝟏𝟓

= 𝟎, 𝟑𝟎𝐇𝐳 
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recommended that the Type 2 spectrum is adopted. A simple formula to find the surface wave magnitude from 
the Richter magnitude scale ([29]) is: 

MS = -3,2 + 1,45.ML 
(4.14) 

 
- Direction: If the spectrum is applied in X or Y direction, then this must be set to ‘Horizontal’. If the spectrum is 
to be applied in the Z direction, then this property must be set to ‘Vertical’.  

 
 
 

 Calculation protocol 
 
In the calculation protocol of SCIA Engineer the intermediate results that were determined while calculating the global 
effect of a spectral loading can be found.  
This paragraph describes the formulas that have been used to determine those intermediate results. 
 

Natural circular frequency and modal shape 
 

Mass matrix [M]ୈ 
Mass vector }1{][}{  DMm  

Natural circular 
frequency of mode shape 
j 

)( j  

Natural normalized 
modal shape  

)(}{ j , Avec 1}{][}{ )()()(  jjD
T
j MM   

Total mass in kth direction  totkM ,  

Acceleration response 
spectrum   

)(,, jkaS  

Direction k 
Total number of 
directions 

NK 

 
Participation factor of the mode shape j in direction k 
 

Participation factor  }{}{
}{}{

)(
)(, m

M

m T
k

j

T
k

jk 


 


  

Effective mass 2
)(,)(

2
)(,)(,, jkjjkjefk MM    

Participation mass ratio  
totk

jefk
jk M

M
L

,

)(,,
)(,   
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Mode coefficient for mode j 
 

Mode coefficient in kth 
direction  2

)(

)(,)(,,
)(,

j

jkjka
jk

S
G




  

Total mode coefficient  
2

)(

1
)(,)(,,

)(

j

NK

k
jkjka

j

S
G







  

 
Response of mode shape j 
 

Displacement 
)()()( }{}{ jjj Gu   

)()(,)( }{}{ jkjkjk Gu   

Acceleration 
)()(

2
)()( }{}{ jjjj Gu    

)(,)(,,)()(,
2
)()( }{}{}{ kjkjkajkjkjjk SGu  

Lateral force in node i for 
k direction 

)(,,)(,)(,,)(,,)(,, jkijkjkajkijki SmF    

Shear force in direction k 
{}{}{}{ )()(,)(,,)()(,,)(, SmuFF T

jkjkjka
T
jk

i
jkijk  

2
)(,)(,,)(, jkjkajk SF   

Overturning moment in 
node i for direction k 

ijkijkjkakijki zSmM  )(,,)(,)(,,,)(,,   

Overturning moment in 
direction k 

 
i

ijkijkjkaki
i

jkijk zSmMM )(,,)(,)(,,,)(,,)(, 

 
i

ijkikijkjkajk zmSM )(,,,)(,)(,,)(, 

 
The calculation of these parameters will be illustrated with an example further in this chapter. 
 
 

 Modal combination methods 
 
Modal combination methods are used to calculate the response R of a seismic analysis. The term "response" (R) refers to 
the results obtained by a seismic analysis, i.e. displacements, velocities, accelerations, member forces and stresses.  
Because the differential equations were uncoupled, a result will be obtained for each mode j.  
 
To obtain the global response Rtot of the structure, the individual modal responses R(j) have to be combined. 
 
The modal combination methods that are used in SCIA Engineer are: 

- SRSS method (Square Root of Sum of Squares) 

R୲୭୲ = ඩ෍ R(୨)
ଶ

୒

୨ୀଵ

 

Where R(j) the response of mode j. 
 

- CQC method (Complete Quadratic Combination) 

R୲୭୲ = ඩ෍ ෍ R(୧). ρ୧,୨. R(୨)

୒

୨ୀଵ

୒

୧ୀଵ

 

Where: 
R(i), R(j) the response of mode i and j 

   ρ୧,୨: modal cross correlation coefficients 
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ρ୧,୨ =
8. ඥξ୧ξ୨. ൫ξ୧ + rξ୨൯. r

ଷ
ଶ

(1 − rଶ)ଶ + 4. ξ୧ξ୨r(1 + r²) + 4. ൫ξ୧
ଶ + ξ୨

ଶ൯. r²
 

   r: 

r =
ω୨

ω୧

 

   ξ୧, ξ୨: damping ratio for mode i and j 
 
This method is based on both modal frequency and modal damping. The CQC-method thus requires the 
input of additional data: a Damping Spectrum to define the damping ratio for each mode. 
In many cases however, there is no procedure to calculate the damping ratio for the higher modes. Most of 
the time, the same damping ratio is then used for all modes [17]. 

 
- MAX method 

R୲୭୲ = ඩR(୨౉ఽ౔)
ଶ + ෍ R(୨)

ଶ

୒

୨ୀଵ

 

where: 
R(j) the response of mode j. 
R(jMAX) the maximum response of all modes. 

 
 
Eurocode 8 [7] prescribes the SRSS-method. However this method may only be applied if all relevant modal responses 
are independent of each other. This is met if the period of mode j is smaller or equal to 90% of the period of mode i.  
If modal responses are not independent of each other a more accurate procedure like the CQC-method needs to be used.  
The following numerical example shows this difference between SRSS and CQC. 
 
 
------------------------------------------------------------------------------------------------------------------------------------------------------------- 
Example 03-1.esa 
 
A four-storey symmetrical building is modelled in a 3D analysis (from [18], p.15-9). The building is symmetrical; however, 
the centre of mass of all floors is located 25 inches from the geometric centre of the building.  
 

 
 
The structure has the following natural frequencies for the first 5 modes: 

 
Mode 1: f = 13,87 Hz 
Mode 2: f = 13,93 Hz 
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Mode 3: f = 43,99 Hz 
Mode 4: f = 44,19 Hz 
Mode 5: f = 54,42 Hz 

 
It is clear that modes 1 & 2 and 3 & 4 are very closely spaced. It is typical for most three-dimensional building structures 
that they are designed to resist earthquakes from both directions equally. Therefore the similar eigenmodes in X and Y-
direction have almost the same natural frequencies.  
 
Because of the small mass eccentricity, which is normal in real structures, the fundamental mode shape has x, y, as well 
as torsion components. Therefore, the model represents a very common three-dimensional building system.  

 
The building was subjected to one component of the Taft 1952 earthquake. An exact time history analysis using all 12 
modes and a response spectrum analysis were conducted. The maximum modal base shears in the four frames for the 
first five modes are shown in the figure below. 
 

 
 

The maximal base shear forces are: 
Mode 1: F = -57,53 kN 
Mode 2: F = 52,30 kN 
Mode 3: F = -9,02 kN 
Mode 4: F = 8,12 kN 
Mode 5: F = 0,33 kN 

 
To obtain the Global Response, these modal responses are combined using both the SRSS-method and the CQC-method 
as well as a sum of the Absolute Values. 

 
Now the maximum total base shears using different methods are compared: 

- The time history base shears are exact.  
- The SRSS method produces base shears that under-estimate the exact values in the direction of the loads by 

approximately 30 percent and overestimate the base shears normal to the loads by a factor of 10.  
- The sum of the absolute values grossly over-estimates all results.  
- The CQC-method produces very realistic values that are close to the exact time history solution.  
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Results for the global Base Shear: 
 

 Lateral Transversal 

Exact solution using Time-
History Analysis 

112,4kN 5,44kN 

Global Base Shear using SRSS 78,8kN 78,8kN 

Global Base Shear using CQC 111,1kN 6,37kN 
 
In this example, the SRSS-method overestimates the Base Shear by a factor of 10.  
 
For the CQC-method, the following Modal Cross Correlation coefficients 𝛒𝐢,𝐣 are used with a damping ratio 𝛏𝐢,𝐣 of 5%.  
 

Mod
e 

1 2 3 4 5 

1 1,00
0 

0,99
8 

0,00
6 

0,00
6 

0,00
4 

2 0,99
8 

1,00
0 

0,00
6 

0,00
6 

0,00
4 

3 0,00
6 

0,00
6 

1,00
0 

0,99
8 

0,18
0 

4 0,00
6 

0,00
6 

0,99
8 

1,00
0 

0,18
6 

5 0,00
4 

0,00
4 

0,18
0 

0,18
6 

1,00
0 

 
It is of importance to note the existence of the relatively large off-diagonal terms that indicate which modes are coupled.  
 
If one notes the signs of the modal base shears shown on the previous page, it is apparent how the application of the 
CQC method allows the sum of the base shears in the direction of the external motion to be added directly. In addition, 
the sum of the base shears, normal to the external motion, tend to cancel.  
 
The ability of the CQC-method to recognize the relative sign of the terms in the modal response is the key to the 
elimination of errors in the SRSS-method.  
 
------------------------------------------------------------------------------------------------------------------------------------------------------------- 
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3.3 Seismic calculation in SCIA Engineer 
 
The following diagram show the required steps to perform a Spectral Analysis calculation: 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
As specified in the theory, the dynamic calculation is transformed to an equivalent static calculation. Therefore, a Linear 
Calculation needs to be executed. During this calculation, the Free Vibration Calculation will also be performed since this 
data is needed for the Seismic results.  

 
The diagram is illustrated in the following examples. 
  

Activate the functionalities “Dynamics” 
and « Seismic Analysis » 

Create a mass group 

Create a mass combination 

Specify the number of eigenmodes to be calculated 
 

Refine the Finite-Element mesh if required 

Perform a linear calculation 

Input masses Generate masses from static load cases 

Create a seismic spectrum 

Create a seismic load case 
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------------------------------------------------------------------------------------------------------------------------------------------------------------- 
Example 03-2.esa 
 
In this example a steel industrial structure is modelled.  
 

 
 

Static load cases are created: the imposed load is CAT-B, offices.  
 

 
 
 
The structure will be subjected to an earthquake in X and Y-direction according to Eurocode 8, using a Design Response 
Spectrum for Ground Type C with a behaviour factor of 1,5. The coefficient of acceleration is 0,20g. 
Below we reported a map of Europe to show how this acceleration relates to the values in the different countries.  
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The earthquake hazard map of Europe 

 
The earthquake hazard map shows the expected level of ground shaking at a specific location due to future potential 
earthquakes that might occur locally or at a greater distance. Ground shaking is expressed as Peak Ground Acceleration 
(PGA), normally given in the percentage of "g", the Earth's gravitational acceleration. The values displayed on the 
earthquake hazard map of Europe are based on the calculations of Europe's updated earthquake hazard model (ESHM20). 
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Step 1: functionality 
 
The first step in the Dynamic calculation is to activate the functionality Dynamics on the Functionality tab in the Project 
Data. In order to execute a Seismic calculation, also the Seismic spectral analysis functionality needs to be activated: 
 

 
 
 
Step 2: mass group 
 
The second step is to create a “Mass Group”:  
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NB:  

- It is recommended to use the option: “Keep masses up-to date with loads”: this makes sure that all changes in 
the load case are taken into account in the transformation to masses.  

- These masses are NOT directly applied to the analysis, it is only a transformation from load to mass. For 
example, we can transform the 100% of the imposed load Q1, but we will apply only a percentage of it for the 
analysis. 

- The transformation of the masses of snow load and wind load is not needed for this case, please check the psi2 
values of your structure.  

- For additional masses, even if they’re related to a specific load case (ex. Permanent load) we suggest to add a 
separated mass group, as for Step  3 
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Step 3: additional masses 
 
Imagine to take into account an additional acceleration of panels which are often used as cladding:  
 

 
 
The static load goes to the foundation, we don’t take it into consideration in the analysis.  
 
For seismic purposes, it needs to be applied instead a mass acting out of the plane, considering half of the mass of the 
panel. For this reason, a separate mass group is created: 
 

 
 
Go to the option “masses” and select MGk_2: 
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Apply a “Point in mass on 1D”: 
 

 
 
The panel could be 20cm thick, and considered of being in concrete material, then a mass of 
2500(kg/m^3)x0.2(m)x6(m)x5(m)/2=7500 kg can be applied to the central columns, and half of it to the sides. It will 
activate an acceleration only in the X direction: 
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Step 4: combination of mass groups 
 
Next, the Mass Group is put within a Combination of Mass Groups, which can be used for defining the Seismic load case. 

 

 
 
 
The coefficient 0,3 is the psi2 factor that you can find in the code; this is also the reason why snow and wind load are not 
taken into account in this specific case, as the coefficient is null:  
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Step 5: finite element mesh 
 
As specified in the previous chapters, the finite element mesh needs to be refined to obtain precise results. This can be 
done through the main menu Tools / Calculation & Mesh / Mesh settings. 
 
For this example it will be shown the difference between the default mesh, not refined, which will position the masses 
on the nodes of the structure, and a mesh set to 10 finite elements. 
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Step 6: number of frequencies 
 
The last step before the seismic results can be checked, is setting a sufficient amount of eigenmodes to be calculated. For 
this example, 70 eigenmodes are chosen. 
In the main menu Tools / Calculation & Mesh / Solver settings, the number of frequencies is thus set to 70. 
 

 
 
 
 
 

Step 7: results of the modal analysis 
 
A linear calculation and eigenmodes have been performed. 
 
Open the calculation protocol: 
 

 
 
 
Select eigen frequency, and open the Result Table. 
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For the case with a default mesh with 1 finite element:  
 

- Modes in X direction: mode number 1 is predominant, with a period of 0,52s 
 

 
 
 

- Modes in Y direction: mode number 5 is predominant 
 

 
 
 

- Torsional modes: mode number 2 is predominant 
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For the case with a division in 10 finite elements: 
 

- Modes in X direction: mode number 2 is predominant, with period 0,52 
 

 
 
 

- Modes in Y direction: mode number 18 is predominant 
 

 
 

- Torsional modes: mode number 4 is predominant 
 

 
 
 
Conclusion: 
 
With the masses in the nodes (1 finite element), we avoid local modes, and we need fewer modes to reach 90% of the 
activated mass, while the results remain quite similar. This approach could be used in specific cases, but it is suggested 
always to compare the results with a more detailed analysis.  
 
By reading further, you will notice that there was a mistake in the model, that was detected only thanks to a more detailed 
analysis. 
 
Notice that the mass of the wall is applied to the nodes of the columns in the first case, which produces the difference in 
the activated mass between the two cases.   
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Always check if there are any local modes before a global mode. In this case there is mode n.1: 
 

 
 
 
The hinge was not defined correctly, as for the others. By changing it, the local mode disappear:  
 
The eigenmodes can be displayed by this option: 
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The deformed structure can be shown to view the eigenmodes using the 3D displacements: 
 

 
 

  
 
Mode in Y direction: 
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To check if the number of modes is sufficient, we have to have a look at the calculation protocol for the eigen frequencies.  
 

  
 

 
 
 
At the top it is possible to read the total moving mass and total mass; the difference gives the mass that is set on the 
nodes where a support is. It is possible to see the mass related to the cladding, which is activated only in the X direction. 
 
It follows the list of modes, where it is possible to remark that now the first mode is not a local mode anymore. 
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As specified in the first example of this course, the Modal Participation Factors show the amount of mass that is vibrating 
in a specific eigenmode as a percentage of the total mass.  
 
According to Eurocode 8 [7] the sum of the effective modal masses for the modes taken into account must amount to at 
least 90% of the total mass of the structure.  
 
This criterion is fulfilled which indicates the Eigen modes are sufficient for this example.  
However it is important to see that the number of eigenmodes taken into account is sufficient in the X-direction to 
evaluate a dynamic load working in the X-direction. If the total is under 90%, the number of eigenmodes in the solver 
setup would have to be augmented and the calculation protocol for the Eigen Frequency would have to be checked again. 
 
The Damping ratio shows the manually inputted damping ratio for the respective Eigenmodes.  
 
It is important to keep in mind that the Seismic Spectra of Eurocode 8 have been calculated with a damping ratio of 5% 
as specified in the theory. When a damping ratio is manually inputted, the spectra need to be adapted. This is done 
through the Damping Coefficient. 
 
 
 
Step 8: seismic load case 
 
After creating a Mass Combination, a Seismic load case can be defined through the workstation « Loads » and « Load 
Cases ». 
 
The action type is « Variable ». 
The load type is « Dynamic ». 
The specification is « Seismicity ». 
 

 
 
Now the parameters for the seismic load case will become visible. These parameters will now be explained (going from 
top to bottom). 
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 Response Spectrum: 

 
o After choosing the « Load type » as « Dynamic », you will see the different spectrums which are 

already composed in the project (FS1 by default). You can tick on the three points on the line 
“Response Spectrum » to go to the list with spectrums, and then choose “New” to create a new 
spectrum. 

 

 
 

o It is also possible that there is no spectrum in the project yet. Then, after choosing the « Load 
type » as « Dynamic », the software will automatically open the list with spectrums and click on 
“New” for you. The next window will pop up. Choose « Input type = Eurocode » and tick on « Code 
Parameters ». 
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o In « Code Parameters », the spectrum will be defined: 

The coefficient of acceleration ag is 0,2. Note that ag is automatically calculated after 
changing coefficient of acceleration ag. 

 The behaviour factor q is 1,5. 
 The subsoil type is type C. 
 The spectrum type is type 2. 
 The spectre is used in X (and Y) direction, so the horizontal direction. 

 

 
 

o After changing the parameters, click on « OK » until you get back to the load case. 
 

 Direction: you need to choose a direction (X, Y or Z) to apply a spectrum in this global direction. We advise to 
use one direction by load case, and to combine the different load cases in one seismic combination. 

 
 Rotation around Z axis [deg]: if you decide to apply a spectrum in an inclined direction from X, Y or Z axis, you 

can define a rotation angle. For example if you define 45° in the X direction, the spectrum will applied in the 
following direction: 
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 X, Y Z coefficients: this is used to modify the accelerations in the spectrum without changing the spectrum 
parameters. We advise to set this to 1.  

 
 Acceleration factor: this factor is multiplied with the factor X, Y, Z (all of them). This factor should be set to 1 

since the acceleration factor is already used in the parameters of the spectrum. 

 
 Overturning: this parameter is used when the supports of the structure are above ground level. By default, this 

value equals 0.  

 
 Equivalent lateral forces: the analysis method by default in the software is the 4.3.3.3 article « Modal analysis 

using response spectrum ». But by ticking this option, the software will apply the method of 4.3.3.2 article 
« Analysis method using lateral forces ». 

 
 Accidental eccentricity: most of the seismic codes require that structures are checked for torsion due to mass 

eccentricity including an additional eccentricity, which is the “accidental eccentricity”. Please note, that 
“accidental eccentricity” may be used only together with the reduced model analysis. We will explain the 
reduced model analysis and accidental eccentricity later on.  

 
 Modal superposition:  

 
- Type of superposition : here the type of modal superposition can be chosen. In this example, the SRSS 

method is used. The use of the CQC method will be illustrated later on.  
 SRSS: Square Root of Sum of Squares. Because of the square root in the formulas of the 

modal combination methods, the results are always positive.  

R = ටR(ଵ)
ଶ + R(ଶ)

ଶ + R(ଷ)
ଶ + R(ସ)

ଶ + R(ହ)
ଶ + ⋯ 

 
 Max: modified SRSS method (method not included or described in Eurocode 8) 

R୲୭୲ = ඩR(୨୫ୟ୶)
ଶ + ෍ R(୨)

ଶ

୒

୨ୀଵ

 

 
 CQC: Complete Quadratic Combination 

R୲୭୲ = ඩ෍ ෍ R(୧). ρ୧,୨. R(୨)

୒

୨ୀଵ

୒

୧ୀଵ

 

 
- Unify eigenshapes: this option can be used in the seismic analysis in the case of the method SRSS. Classical 

the following formula is used for SRSS:  

R = ටR(ଵ)
ଶ + R(ଶ)

ଶ + R(ଷ)
ଶ + R(ସ)

ଶ + R(ହ)
ଶ + ⋯ 
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If the option unify eigenshapes is checked, then the following condition is verified: 

1 −
ω୧

ω୨

≤ precision %    (or i < j and ω୧ ≤ ω୨) 

 
If the check is fulfilled and mode (i) and (j) are multiple, then the superposition will be modified: 

R = ටR(ଵ)
ଶ + ൫R(ଶ) + R(ଷ)൯

ଶ
+ R(ସ)

ଶ + R(ହ)
ଶ + ⋯ 

 
 

Note: 
The options under Unify  Eigen Shapes can be used to avoid the errors in the SRSS-method for closely 
spaced modes. As specified in the theory however, it is advised to use the CQC-method in such cases 
(Eurocode 8 article 4.3.3.3.2). 
 

o After choosing « CQC » for the type of superposition, an option « Damping » displays below. The 
user has to define a constant damping ratio which will be used for all eigenmodes. By default, the 
displayed ratio is equal to 5% because this is the ratio used in the seismic spectrums definition of 
the Eurocode 8. But in this example, the ratio will be equal to 4%. 

 

This damping spectrum will be used for the calculation of the Modal Cross Correlation coefficients 
of the CQC-method and will also be used to calculate the Damping Coefficient for each mode as 
specified in the previous example.  

 
o Filter on total mass ratio: Only modes with the highest modal mass ratio are taken into account for 

modal superposition. Modes are sorted in decreasing order of their modal mass ratio and 
superposed until the specified cumulated mass ratio is reached. 

The ratio to reach should be at least 90% to respect the article 4.3.3.3.1 from EN 1998-1-1. 
 

o Filter on minimal mass ratio : Only modes with a modal mass ratio higher than the specified value 
are taken into account for modal superposition. 

The minimal mass ratio should be at least 5% to respect the article 4.3.3.3.1 from EN 1998-1-1. 

 

 
 

Note: if the two previous filter options are not ticked, all modes asked by the user will be displayed 
and considered in the modal superposition. 
 
For additional options, check paragraph 3.5 and 3.6 for more information 
 
 

o Use residual mode: you have to verify if 90% of the total mass is included in de modal masses (EN 
1998-1-1 art.4.3.3.3.1). This will be checked later on in the calculation protocol. If the number of 
total participating mass is under 90%, the number of eigen frequencies has to be increased. 

 
To avoid this check, it is possible to choose missing mass in modes or residual mode. 
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 Signed results / Dominant mode : you can select the mode shape which will be used to define the sign. If 

automatic is chosen as mode shape, the mode shape with the biggest mass participation is used (sum of direction 
X, Y and Z). This option can be used for example for shear walls. 
 
This result only makes sense if this single eigenmode is clearly the most dominant for that spectrum, and all 
other modes have almost no significance for that spectrum. But since this option manipulates the results, we 
advise you not to use it, unless you have a very good knowledge of SCIA Engineer and of seismic calculations. 

 
 
 
Step 9: reading results 

 
The following results are obtained through the Calculation protocol of the Linear Calculation: 
 

 
 

- Sax, Say and Saz represent the spectral accelerations. 
- G(j) is the mode coefficient for mode j. 
- Fx and Fy are the Base Shears for each mode. 
- Mx and My are the Overturning Moments for each mode. 

 
 

The results show that for each mode, the Damping Ratio is equal to 4%. 
 
As specified in the theory, the Seismic Spectra of Eurocode 8 have been defined using a Damping Ratio of 5%. Since now 
another value is used for the damping, the spectrum needs to be corrected using a Damping Coefficient . 
Following Eurocode 8 [6], this coefficient is calculated as follows: 

η = ඨ
10

(5 + ξ)
≥ 0,55 

(4.13) 
 
Where:  = Damping Ratio expressed in percent. 
 
For a default damping ratio of 5%,  equals unity. 
The lower limit of 0,55 for the Damping Coefficient indicates that Damping Ratio’s higher than   28,06% have no further 
influence on the seismic spectrum. 
 
For the exact application of  in the formulas of the seismic design spectra, reference is made to Eurocode 8 [7].  
In this example, the damping ratio of 4% causes the following Damping Coefficient: 
 

η = ඨ
10

(5 + 4)
= 1,0541 

 
This indicates that the spectral accelerations will be augmented by 5% due to the fact that less damping is present in the 
structure. 
The spectral acceleration for mode 1 is in this case is 2,327 m s²⁄ :  
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The spectral acceleration can thus be multiplied by : 

Sୟ୶,(ଵ) = 2,327 m s²⁄ ∗ 1,0541 = 2,452 m s²⁄  
 

With these new spectral accelerations, the calculation of the Base Shear, Overturning Moment, … can be repeated. 
 
 
 
Manual Calculation 
 
In this paragraph, the application of the CQC method is illustrated for the global response of the Base Shear. 

- Mode 1 : ω(ଵ) = 11,9203rad/s  F(ଵ) = 313,89kN 
- Mode 2 : ω(ଶ) = 17,6675rad/s  F(ଶ) = 17,31kN 

 
Using a spreadsheet, the Modal Correlation coefficients 𝛒𝐢,𝐣 are calculated with a damping ratio 𝛏𝐢,𝐣 of 4%. 

 

ω,1 11,9203 

ω,19 17,6675 
r 1,482136 
ξ 0,04 

ρ1,19 0,03846 
 
 

Mode 1 2 
1 1 0, 03846 
2 0, 03846 1 

 
 

R୲୭୲ = ඩ෍ ෍ R(୧). ρ୧,୨. R(୨)

୒

୨ୀଵ

୒

୧ୀଵ
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R୲୭୲ = ඪ

313,89kN ∗ 1 ∗ 313,89kN
+2 ∗ 313,89kN ∗ 0,03846 ∗ 17,31kN

+17,31kN ∗ 0,03846 ∗ 313,89kN
+17,31kN ∗ 1 ∗ 17,31kN

 

R୲୭୲ = 315,03 
------------------------------------------------------------------------------------------------------------------------------------------------ 
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3.4 Seismic combinations 
 
There are different possibilities to create load combinations which include also seismic load cases.  
 
First of all, three load cases are created. 
The general format of effects of actions should be: 
 

Eୢ = E൫G୩,୨; P; A୉ୢ; ψଶ,୧Q୩,୧൯       j ≥ 1 ; i ≥ 1     
 
The combination of actions in brackets can be expressed as: 

෍ G୩,୨

୨ஹଵ

"+" P "+" A୉ୢ" + " ෍ ψଶ,୧Q୩,୧

୧ஹଵ

  

 
Where Ed: 

EEdx + 0,3.EEdy + 0,3.EEdz 

0,3.EEdx + EEdy + 0,3.EEdz 

0,3.EEdx + 0,3.EEdy + EEdz 

 
Note: the seismic analysis in Z direction is in most cases irrelevant and it can be ignored. 
 
So, there load cases include respectively the seismic spectra in the directions X, Y and Z. 
 
For example: 
 

 
 
Please note that a different Eurocode must be generated for the vertical direction. In SCIA Engineer, a load case must be 
made for component of the earthquake in the X-direction, another for the Y-direction, and another for the Z-direction.  
Please make sure that the ‘factor’ just underneath the spectrum, « Coef.Z », is not set to ‘zero’, since the accelerations in 
the seismic spectrum will be multiplied with this value.  
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The spectrum is Z-direction is different from the horizontal in Xand Y-direction and needs to be created. 
 

 
 
Next, we have to assign a type of load group to the seismic load case. 
 
First of all, the relation between load cases in the same group has to be defined. The three seismic spectra have to appear 
always in the same combination. So, the option ‘together’ will be chosen here.  
Next, the type of load has to be selected: for this, the special type ‘seismic’ has been implemented. 
 

 
 
After the creation of seismic load cases, the combinations can be made. For this purpose, a new type of combinations 
was implemented: namely the Seismic combination according to the EC-EN.  
To use this special type of combination, the seismic load cases must have a load group with properties ‘seismic’ and 
‘together’ assigned to it. Also no active coefficients can be used. 

 
This combination envelope will automatically look at the seismic load cases with both a positive and a negative coefficient, 
and will automatically make one of the seismic load cases the primary load case and the others secondary load cases. 
 
If we would not yet take into account that the coefficients can be both positive and negative, then an example would 
be: 

EEdx + 0,3.EEdy + 0,3.EEdz 

0,3.EEdx + EEdy + 0,3.EEdz 

0,3.EEdx + 0,3.EEdy + EEdz 
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In the case of the EC-EN, we have to make two sets of combinations, one for the deformations and one for the internal 
forces. This means that we would have in total six EN-Seismic load cases. 
 
For internal forces, the load cases have to be introduced as described above. 
For deformation results, we must create three new load cases, and multiply all displacements results by the behaviour 
factor q, as described on article 4.3.4 of EN 1998-1-1 : 
 
 

 
 
 
 

3.5 Mass in analysis 
 
 
As mentioned before, the sum of the effective modal masses for the modes taken into account must amount to at least 
90% (EN 1998-1-1 art.4.3.3.3). The user can try to achieve this with the following possibilities: 

- Take more natural frequencies into account 
- Assign mass more to nodes/connection instead of beams (to avoid local eigenmodes). 

 
The mass which has not been taken into account (for example, if the effective modal mass is 90%, then there is 10% not 
taken into account), can be treated in two possible different ways in SCIA Engineer: 
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The used method is set in each seismic load case and is again displayed in the linear calculation protocol. Let’s take as 
example that the effective modal mass in a direction is 90%. Then how can the other 10% be treated? 

- If the option « Use residual mode » is not ticked: in this case, the 10% would be ignored. We would only 
take into account 90% of the mass of the structure to calculate the effects of an earthquake.  

- If the option « Use residual mode » is ticked: in this case, a ‘fictive’ mode corresponding to the combination 
of all missing modes can be calculated. But since these missing modes are over different natural frequencies, 
the last found frequency will also be the natural frequency of this mode. In the calculation, the forces in this 
mode will be calculated in the same way as in the other modes.  

 
A detailed explanation of these modes by using examples can be found in Annex D. 
 
 
 
 

3.6 Modal superposition 
 
The response spectrum method uses a modal superposition of the relevant eigenmodes of the structure. The methods 
which are used for modal superposition are the ones described at the beginning of the chapter: SRSS or CQC. 
 
These methods have the advantage of very easily providing design values of all results (displacements, internal forces…) 
but only part of the information is available: 

- Min and max values of any result can be determined; 
- The actual sign of a result cannot be defined; 
- The concomitance of separate results cannot be defined. 

 
The loss of concomitance and sign of results is an issue typically when computing resulting forces in shear walls: it is not 
possible to compute a resultant from internal forces after modal superposition, as typically all raw results are positive.  
Computing resultant forces in one of those shear walls would typically give near-zero moments and extremely 
overestimated axial forces. 

 
An automatic method can be used since using signed results (described below) is only a workaround to obtain usable 
resulting forces.  
The rigorous method for computation of resultants in the context of the response spectrum method can be summarized 
as follows: 

- Compute the local internal forces for each eigenmode; 
- Compute the resultant force for each eigenmode separately; 
- Apply the modal superposition to the obtained modal resultant values. 

 
When proceeding so, no result signature is necessary to obtain correct values of resulting forces. Moreover there are 
cases where the method described in the previous paragraph gives overestimated results of most result components and 
can therefore only be seen as an approximation. The method described here is clearly more accurate. 
 
This option is enabled by default for new projects in SCIA Engineer. For old projects (created before version 2013), you 
have to open the main menu Tools / Calculation & Mesh / Solver Settings. 
 
To obtain usable values of resulting forces, a possibility is the so-called “signed results” method.  
It consists of applying some signature scheme to raw results of the modal superposition. A classical approach uses the 
sign of the most significant eigenmode.  
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It is however very important to know that this method will only give good result if there is 1 and only 1 eigenmode of 
great importance in that respective direction (compared to the other eigenmodes). 
 

 

 
 
 
Applying this to shear walls, it is possible to “sign” the internal forces, making them suitable for computation of resulting 
forces.  
 
You can sign results in SCIA Engineer by selecting a signature mode manually or a default mode determined by the 
program. If the Automatic is chosen, the mode shape with the biggest mass participation is used (sum of direction X, Y 
and Z). 
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CHAPTER 4 : REDUCED ANALYSIS MODEL 
 
 
 

4.1 Theory 
 
 
The actual tendency in FE structural analysis is using full 3D modelling of the considered structure. SCIA Engineer obeys 
that rule as structures are usually modelled in 3D using beam and shell elements, including buildings.  
 
Once a detailed 3D model is ready for statical analysis of a structure, it is natural to use it also for dynamic analysis and, 
more specifically, for seismic design. A typical issue of full 3D model is, that seismic design regards mostly the global 
behaviour of the structure whence the full mesh of the structure provides a lot of information about local behaviours. 
When performing the modal analysis, the full mesh finds all local and global vibration modes, but the local modes are 
irrelevant for the overall seismic response of the structure. It appears hence logical to use a different, reduced mesh for 
the dynamic analysis, which ignores these local modes.  
 
There are well known matrix condensation techniques (Guyan Reduction, also known as static condensation) which allow 
the user to obtain a reduced system in a very efficient way, but those methods are not well suited for dynamic analysis. 
An Improved Reduced System (IRS) method has been developed which takes into account not only the stiffness matrix of 
the system, but also the mass matrix during the condensation process. That method proved to give excellent results for 
dynamic analysis, with both modal analysis and direct time integration methods.  
 
 
The algorithm implemented in SCIA Engineer uses the IRS method and consists of 3 steps: 

 
1. The IRS method is used for condensing the mesh of the analysis model.  
 
2. The modal analysis is performed using the reduced mesh, which has typically 1’000 times less degrees of freedom than 
the original full mesh. This makes the calculation of eigenvalues massively faster on large structures and also avoids 
unwanted local modes. The latter is particularly interesting for seismic analysis.  
 
3. The results of the reduced system are expanded to the original full mesh, allowing for output of detailed results in the 
entire structure. 
 
 

 
 
 
 
 

  

Full 3D storey-
based input 

Condensed model 
& dynamic analysis 

Expand back to full 
mesh for result input 
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The IRS method allows: 
 
1. Elimination of irrelevant, local bending vibration modes in the slabs : local modes in all structural elements are implicitly 
removed, due to the elimination of unwanted degrees of freedom. Of course, adding more reduction nodes would allow 
for more detailed analysis of local modes, but it is particularly interesting for seismic analysis to keep in the reduced 
model only the nodes that are strictly necessary to reproduce the typical seismic behaviour of a building. Ultimately, it is 
up to the user to choose the reduction points in such a way that the wanted eigenmodes are obtained. 
 
2. Reduction of computation time: the computation time is reduced, due to the drastic reduction of the number of 
degrees of freedom; actually, the reduction is even more important than with diaphragms, as supporting members are 
also condensed.  
 
3. Easy handling of mass eccentricities for each deck : the IRS analysis uses a full mass matrix, which allows for exact 
implementation of mass eccentricity in each node of the reduced system.  
 
 
Remark: The elimination of unwanted frame effects from the structural behaviour (considering deck slabs as diaphragms) 
is not addressed by the IRS analysis in itself, as it does not modify the mechanical behaviour of the structure. However, 
as unwanted local bending modes are implicitly removed from the reduced system, so-called flexible diaphragms may be 
easily simulated by significantly reducing the bending stiffness of deck slabs. Not only does that allow obtaining classical 
diaphragm behaviour by means of a very low bending stiffness, but also intermediate behaviour where the bending 
stiffness is less drastically reduced and frame effects are therefore reduced, but not completely removed.  
 
The condensed model is obtained from Reduction nodes. R-nodes are placed in each storey, at the specified level, in the 
middle of the structure (all R-nodes are located on the same vertical axis).  
 
During the analysis, the reduced model is automatically generated from the full mesh of the structure. Each node of the 
full mesh is mapped to the closest R-node. In a typical building configuration, this means that each R-node will receive 
the stiffness, loads and masses from the corresponding deck slab, from the top half of the supporting members below 
the slab and from the bottom half of the supporting members above the slab. 
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Unlike the classical modal analysis, which typically uses a lumped mass matrix (only diagonal terms are non-zero), the 
reduced system uses a full mass matrix , with non-zero values out of the diagonal. This means that mass eccentricities 
can be taken into account easily by the reduced system. The very small size of the reduced system allows using the full 
mass matrix. 
 
Therefore the reduction points – or so-called R-nodes – that will constitute the reduced model do not need to be located 
in a particular position, such as the mass centre of each storey. As the structure may have to be calculated several times 
with various distributions of the masses, the mass centre of each storey is likely to be slightly different depending on the 
selected mass combination. Thanks to the use of a full mass matrix, the same R-nodes may be used in all cases.  
 
During the analysis, the reduced model is computed automatically from the full mesh. Each node of the full mesh is 
mapped to the closest R-node of the reduced model. 
 
 
 

4.2 IRS method in SCIA Engineer 
 
To make an IRS calculation, you first have to perform all the steps as described in detail for seismic calculation in previous 
chapters. As a reminder, those steps are: 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
  

Activate the functionalities “Dynamics” 
and « Seismic Analysis » 

Create a mass group 

Create a mass combination 

Specify the number of eigenmodes to be calculated 
 

Refine the Finite-Element mesh if required 

Input masses Generate masses from static load cases 

Create a seismic spectrum 

Create a seismic load case 
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Before doing the linear analysis, the additional steps you have to execute in order to make an IRS calculation are: 
 

1. You have to enable the reduced model analysis in the project. This can be done via the main menu Tools / 
Configuration and mesh / Solver Settings: 
 

 
 
 

2. Define the building storeys. The Reduction nodes will be calculated from the storey data. In SCIA Engineer, each 
storey is reduced into one R node.  

 
  
 To introduce the building storeys, go to the input panel and in « Line grid and storeys », click on “Storeys”: 
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The storey manager where you can input the levels opens: 
 

 
 

With the default settings, the deck slab of each storey is located at the bottom of the storey, and so is the 
corresponding R-node. It is recommended to keep it that way. This can be seen from the storey Properties: 
 

 
 
 

3. Once the linear calculation has been executed, results are available. There are fundamentally two types of results 
available after an IRS analysis:  
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- The results of the reduced model are automatically expanded to the original mesh and are accessible 
through standard output. This will not be detailed here as it is the same as what has been explained in the 
previous chapters.  

 
 

- Some dedicated results, coming directly from the reduced model, are available in “Results” workstation, 
and « Summary Storey Results ». This typically gives information about the masses, displacements and 
accelerations at each storey in the reduced model. 

 

 
 
 

- Other results can be displayed via the « Results » workstation as « Detailed Storey Results »: this menu can 
be used to display results from the full mesh analysis. It may be used for results from any linear analysis, 
with or without dynamic analysis, with or without IRS analysis. It provides results in all supporting members, 
with easy selection of members per storey. Walls and columns may be represented on the same drawing. 
Typical provided results are: internal forces, resultants per wall or per storey…  

 

 
 

 
 
 
------------------------------------------------------------------------------------------------------------------------------------------------------------- 
Example 04-1.esa 
 
Open the corresponding project. We are going to apply the principles seen above to this small building. 
 
Step 1: set up the seismic model 

 
 Activate “Dynamic” and “Seismic” functionalities from the Project data menu.  

 

 
 
 

 Create mass groups. For this example, we are going to consider 3 mass groups related to 3 static predefined 
load cases : self-weight, dead load (DL) and live load (LL). 

 
 Create a combination of mass groups 
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 Define a seismic spectrum. Let’s consider a seismic spectrum with the following parameters : 
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 Create the seismic load cases in X and Y direction in the “Load cases” window: 
 

 
 

 
 

 Refine the mesh. For this example, we set the mesh as follow: 
 

 
 

 Choose the number of frequencies which have to be calculated (Solver setup). We chose 10 values. 
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Step 2: activate the option “Use IRS (Improved Reduced Model)” 
 
Activate the option “Use the Improved Reduced Model” from the “Solver Setup”. 
 

 
 
 
Step 3: define storeys 
 
Define the storeys from the input panel: 
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The levels are shown graphically. If you select a storey level, you can adapt its properties from the Properties panel: 
 

 
 

 
 
You can check if the supporting members of the building are properly allocated to storeys using the ‘Filtered Allocation 
of Entities’ property.  
 
Optionally, R-nodes may be placed at any level in each storey. The storey property “level of reduction point” allows 
selecting the exact height of the reduction point for each storey separately. 0 corresponds to the bottom of the storey, 1 
to the top of the storey. 
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Step 4: perform the linear calculation and check the results 
 
 
Step 5: summary storey results 
 
There are 3 types of results: storey data, displacements and accelerations. 
 

- Storey data:  
 

Storey data displays for each storey the total mass and the coordinates of the mass center. It is only available 
with mass combinations. 

 
 

 
 

- Displacements & accelerations: 
 

Displacements & Accelerations are available for eigenmodes and seismic load cases. The values of displacement 
& acceleration components are given at the mass centre of each storey.  
 
Results for mass combinations are raw, normalized results from modal analysis, without effect of response 
spectrum. 
 
Results for seismic load cases are values after modal superposition.   
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Using the option ‘Additional values’ in the properties windows you can display more components: 
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Step 6: detailed storey results 
 
Typical provided results are: internal forces, resultants per wall or per storey… 
 
Mainly two types of results are available here: 
 

- Internal forces in supporting members 
 

The result can be displayed on different section levels: 
 

o Top (section at the top of each storey) 
o Middle (section at mid-height of the each storey) 
o Bottom (section at the bottom of each storey) 
o User defined 
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- Resulting forces (by member) 
Location = by member: compute the resulting forces are computed for each wall member separately. 
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Resulting forces in 1D members (columns) are identical to internal forces in 1D members.  
 
Resulting forces in 2D members (walls) compute the resultant at the centre of each wall, according to a 
dedicated local coordinate system, regardless of the System output setting. The coordinate system that is used 
is the same as the LCS of a vertical rib placed in the middle of the wall. It is also the same coordinate system that 
is used for integration strips. 
 

 
 
In this way, resulting forces in walls can be easily displayed together, consistently with internal forces in columns 
on a single drawing. 

 
- Resulting forces (by storey) 

Location = by storey: the resulting forces are computed for each storey, considering all the supporting members 
at once; 1D (columns) and 2D members (walls) are taken into account together 
 

The local X axis is vertical, upwards. 

 

The local Z axis is identical to the Z LCS of the wall. 

 



CHAPTER 4 : REDUCED ANALYSIS MODEL 

109 

 
 
 Total vertical forces in all storeys: 
 

 
 

 
 

------------------------------------------------------------------------------------------------------------------------------------------------------------- 
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4.3 Accidental eccentricity (accidental torsion) 
 
The accidental eccentricity accounts for inaccuracies in the distribution of masses in the structure. Design codes usually 
take it into account as an additional eccentricity that is defined as a fraction of the size of the structure.  
 
In the Eurocode 8, the accidental eccentricity for a given floor is defined as 5% of the width of the floor perpendicularly 
to the direction of the acting seismic action.  
 
In SCIA Engineer, using the IRS condensed model allows introducing accidental eccentricity easily, since the condensed 
model uses only one R-node per storey. The accidental eccentricity may be taken into account either as real mass 
eccentricity or as additional torsion actions (simplified method according to the design codes).  
However, SCIA Engineer uses the simplified method using additional torsion moment.  
Accidental eccentricity is added through static loading (acc. EN 1998-1 4.3.3.3.3) 
 
 

 
 
 
 
 
 
------------------------------------------------------------------------------------------------------------------------------------------------------------- 
Example 04-2.esa 
 
In SCIA Engineer, the accidental torsion can be accounted for in a seismic project using the IRS method.  
 
Open the Load cases window and select one type of Accidental eccentricity: 
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The following methods are available for calculation of AE moments: 
 

- Linear distribution of accelerations (EN 1998-1 4.3.3.3.3 and formula (4.11) )  
- Distribution of accel. from eigenshape (EN 1998-1 4.3.3.3.3 and formula (4.10) )  
- Accelerations from modal superposition  
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Once the accidental eccentricity is selected, a new AE load case and also a new load group are automatically created: 
 

 
 

 
 
------------------------------------------------------------------------------------------------------------------------------------------------------------- 
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CHAPTER 5 : FORCED VIBRATIONS : HARMONIC LOAD 
 
 
In this chapter, the forced vibration calculation is examined. More specifically, the structure will now be loaded with an 
external harmonic load, which will cause the structure to vibrate.  
A forced vibration calculation can be required to check the response of a building near a railroad or major traffic lane, to 
check vibrations due to machinery, to verify structural integrity of a floor loaded by an aerobics class,… 
As in the previous chapter, first the theory will be discussed. The theory will then be illustrated by examples, which will 
again be verified by manual calculations. 
 
 
 

5.1 Theory 
 
 
To understand what is going on during the dynamic analysis of a complex structure with frames or finite elements, the 
forced vibration of a SDOF (Single Degree Of Freedom) system is regarded in detail. A complete overview can be found in 
reference [1].  
 
Consider the following system: 
 

 
 
A body of mass m can move in one direction. A spring of constant stiffness k, which is fixed at one end, is attached at the 
other end to the body. The mass is also subjected to damping with a damping capacity c. An external time dependant 
force F(t) is applied to the mass.  
 
The equation of motion can be written as: 

m. ÿ(t) + c. ẏ(t) + k. y(t) = F(t) 
(3.1) 

 
When the acting force on this system is a harmonic load, equation (3.1) can be rewritten as follows: 

m. ÿ(t) + c. ẏ(t) + k. y(t) = F. sin(ν. t) 
(3.2) 

With: 
 F: amplitude of the harmonic load 
 ν: circular frequency of the harmonic load 
 
A solution to this equation is the following: 

y(t) = eିஞன୲. [A. cos(ωୈt) + B. sin(ωୈt)] + Yୗ.
sin (ν. t − θ)

ඥ(1 − rଶ)ଶ + (2rξ)ଶ
 

(3.3) 
Where: 
 YS: the static deflection 

Yୗ =
F

k
 

(3.4) 



Advanced Training - Dynamics 

114 

 𝜉: the damping ratio 

ξ =
c

2. m. ω
 

(3.5) 
 ωୈ: the damped circular frequency 

ωୈ = ω. ඥ1 − ξଶ 
(3.6) 

  
tan(θ): 

tan(θ) =
2. ξ. r

1 − rଶ
 

(3.7) 
 r: the frequency ratio 

r =
ν

ω
 

(3.8) 
 
The angle θ signifies that the displacement vector lags the force vector, that is, the motion occurs after the application 
of the force. A and B are constants which are determined from the initial displacement and velocity.  
 
The first term of equation (3.3) is called the Transient motion. The second term is called the Steady-state motion. Both 
terms are illustrated on the following figure: 
 

 
 
The amplitude of the transient response decreases exponentially (eିஞன୲). Therefore, in most practical applications, this 
term is neglected and the total response y(t) can be considered as equal to the steady-state response (after a few periods 
of the applied load).  
 
Equation (3.3) can then be written in a more convenient form: 

 
Y

Yୗ

=
1

ඥ(1 − rଶ)ଶ + (2rξ)ଶ
 

(3.9) 
 
(Y/YS) is known as the Dynamic Magnification factor, because YS is the static deflection of the system under a steady force 
F and Y is the dynamic amplitude. 
 
The importance of mechanical vibration arises mainly from the large values of (Y/YS) experienced in practice when the 
frequency ratio r has a value near unity: this means that a small harmonic force can produce a large amplitude of vibration. 
This phenomenon is known as resonance. In this case, the dynamic amplitude does not reach an infinite value but a 
limiting value: 

Yୗ
2ξൗ  
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5.2 Harmonic load in SCIA Engineer 
 
In SCIA Engineer, a Harmonic Load can be inputted after creating a Combination of Mass Groups. This implies that the 
steps used to perform a Free Vibration calculation still apply here and are expanded by the properties of the Harmonic 
Load.  
Conform the theory, a Harmonic Load is defined by a forcing frequency and an amplitude. To specify the damping ratio 
of the structure, the damping ratio can be inputted. Note that the damping ratio and the logarithmic decrement are 
looked upon in more detail in chapter « Damping ». 
 
Harmonic Loads in SCIA Engineer are always defined as nodal forces i.e. a nodal load or a nodal moment. More than one 
node of the structure can be loaded in a load case, but the frequency of all solicitations is equal to the forcing frequency 
specified for that load case. 
 
As specified in the theory, the static results are multiplied by the dynamic magnification factor. The dynamic calculation 
is thus transformed to an equivalent static calculation. Therefore, a Linear Calculation needs to be executed. During this 
calculation, the Free Vibration Calculation will also be performed since this data is needed for the result of the Harmonic 
Load. 
 
The following diagram shows the required steps to perform a Forced Vibration calculation: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
This diagram is illustrated in the following examples. 
  

Activate the “Dynamics” functionality 

Create a mass group 

Create a mass combination 

Specify the number of eigenmodes to be calculated 

Refine the finite element mesh if required 

Perform a linear calculation 

Input masses Generate masses from static load cases 

Create a harmonic load case 

Input harmonic loads 
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------------------------------------------------------------------------------------------------------------------------------------------------------------- 
Example 05-1.esa 
 
In this example, a beam on two clamped supports is modelled. The beam has a cross-section type IPE200, a length of 6 
m and is manufactured in S 235 according to EC-EN. A node has been added to the middle of the beam, in which a mass 
of 200 kg will be inputted. 
 

 
 
One static load case is created: the self-weight of the beam. However, in order not to take the self-weight into account 
for the dynamic calculation, the volumetric mass of S 235 can be set to 1 kg/m³ in the Material Library. This will render it 
easier to check the results through a manual calculation.  
The mass of 200 kg is vibrating with a frequency of 5 Hz. The damping ratio of the system is taken as 5%. 
 
 
Step 1: functionality 
 
The first step in the Dynamic calculation is to activate the functionality Dynamics on the Functionality tab in the Project 
Data. 
 
 
Step 2: mass group 
 
The second step is to create a Mass Group 
 

 
 
 
Step 3: masses 
 
After the Mass Group has been created; the mass of 200 kg can be inputted in the middle of the beam. 
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Step 4: mass matrix 
 
Next, the Mass Group is put within a Combination of Mass Groups, which can be used for defining the harmonic load. 
 

 
 
 
Step 5: harmonic load case 
 
After creating a Combination of Mass Groups, an harmonic load case can be defined through Load cases, Combinations 
> Load Cases. 
 
The Action type is defined on Variable, the Load type is Dynamic. 
On “Specification”, the type of load case « Earthquake » is defined by default. But in this case, it is an Harmonic load case. 
The excitation frequency of the harmonic load is 5Hz. 
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The damping ratio is constant and is equal to 5%. 
 
The last option, Combination of mass groups, shows which mass combination (mass matrix) will be used for the 
calculation of the harmonic load case. 
 
 
 
Step 6: introduction of a point load 
 
The parameters of the load case have been defined, what is left is inputting the amplitude of the load. The mass was 200 
kg.  
This corresponds to a load of 1,962 kN using 9,81 m/s² for the acceleration of gravity.  
This load can be inputted through the input panel « Point load on node »: 
 

 
 
NB: 
As specified in the theory, more than one harmonic load can be inputted in the same harmonic load case however the 
harmonic parameters like damping and forcing frequency are defined on the level of the load case. This implies that, for 
example, when several harmonic loads are vibrating with different frequencies, different load cases have to be created. 
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Step 7: mesh setup 
 
To obtain precise results for the dynamic calculation, the Finite Element Mesh is refined.  
This can be done through the main menu Tools / Calculation & Mesh / Mesh settings. 
 

 
 
The Average number of tiles of 1D element is set to 10. 
 
 
Step 8: solver setup 
 
The last step before launching the calculation is setting the amount of eigenmodes to be calculated. For this example, 
only one eigenmode is required so in Calculation & Mesh / Solver Settings the number of frequencies is set to 1.  
To compare the results with a manual calculation, the shear force deformation is neglected. 
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Step 9: modal analysis 
 
All steps have been executed so the Linear calculation and modal analysis can be started through Calculation, mesh > 
Calculation. 
 

 
 
 
This gives the following results: 
 

 
 
The deformation for the harmonic load shows the following: 
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It is however very important to keep in mind that this is a vibration: half a period later the deformation is to the upper 
side of the beam instead of the lower side.  
 
The moment diagram for the harmonic load would give the next diagram: 
 

 
 

 
 
This diagram is completely analogous to the moment diagram which one finds for a simple point load.  
However, when performing dynamic calculations, one must always take into account both directions of the loading since 
the load vibrates in both directions.  
In SCIA Engineer, this double sided deformation can easily be checked by creating combinations of type code or envelope. 
In these combinations, the dynamic load cases will be accounted for with both a positive and a negative combination 
coefficient and thus both sides of the vibration amplitude are taken into account.  
 
In this example, a combination of type Envelope - ultimate is created which contains only the harmonic load case. 
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The moment diagram for this combination shows the following: 
 

 
 
The vibration effect is correctly taken into account: both sides of the vibration are visible. This is also shown in the 
Combination Key of the Document; which shows the two generated Linear combinations from the Envelope combination 
(Local Extremes): 
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Manual calculation 
 
In order to check the results of SCIA Engineer, a manual calculation is performed.  
First, the calculated eigen frequency is checked using formula (2.3).  
Using default engineering tables [11], the maximum static deformation of a beam with length L, clamped at both sides 
and loaded with a load F in the middle is given as: 

δ୫ୟ୶ =
FLଷ

129EI
 

(3.12) 
Where: 
 F = 1,962 kN = 1962 N 
 L = 6 m = 6000 mm 
 E = 210000 N/mm² 
 I = 19430000 mm4 
 
So: 

δ୫ୟ୶ =
(1962N) ∗ (6000mm)ଷ

129 ∗ 210000 N
mmଶൗ ∗ 19430000mmସ

= 0,54095𝑚𝑚 

 
The k rigidity of this system can then be calculated: 
 

k =
F

δ୫ୟ୶

=
1962N

0,54095mm
= 3626,93 N

mmൗ = 3626933,33 N
mൗ  

 
Applying formula (2.3): 

ω = ඨ
k

m
= ඨ

3626933,33 N
mൗ

200kg
= 134,67 rad

sൗ  

So: 

f =
ω

2π
= 𝟐𝟏, 𝟒𝟑𝐇𝐳 

 
This result corresponds exactly to the result calculated by SCIA Engineer.  
 
Now the eigen frequency is known, the results of the harmonic load can be verified.  
The harmonic load had a forcing frequency of 5 Hz, which corresponds to a circular frequency of 31,416 rad/s.  
 
Applying formula (3.8) the frequency ratio can be calculated: 

r =
ν

ω
=

31,416 rad
sൗ

134,67 rad
sൗ

= 0,233289 

 
The frequency ratio can then be used in formula (3.9) to calculate the Dynamic Magnification Factor: 

Y

Yୗ

=
1

ඥ(1 − r²)ଶ + (2rξ)ଶ
=

1

ඥ(1 − 0,233289²)ଶ + (2 ∗ 0,233289 ∗ 0,05)ଶ
= 𝟏, 𝟎𝟓𝟕𝟐 

 
This implies that the static results need to be multiplied by 1,0572 to obtain the dynamic results.  
The static deformation was calculated as δ୫ୟ୶ = 0,54095 mm. 
 
The dynamic deformation is equal to 1,0572 * 0,54095mm = 0,5719 mm. 
 
This result corresponds exactly to the result calculated by SCIA Engineer.  
 
In the same way the moment in the middle of the beam can be calculated.  
Using default engineering tables [11], the maximum static moment in the middle of a beam with length L, clamped at 
both sides and loaded with a load F in the middle is given as: 

M =
FL

8
=

1,962kN ∗ 6m

8
= 1,4715kNm 
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The dynamic moment is equal to 1,0572 * 1,4715kNm = 1,556kNm 
This result corresponds exactly to the result calculated by SCIA Engineer. 
------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 

5.3 Resonance 
 
 
As specified in the theory, resonance occurs when the frequency ratio r has a value near unity. In this case, large values 
for the Dynamic Amplification factor are obtained.  
To illustrate this, the calculation of the Dynamic Amplification Factor is repeated for different frequency ratios and 
different damping percentages. The results are given in the following table:  

 

 
 
In order to draw conclusions, the numerical results are plotted graphically: 
 

 
Amplitude – frequency response 
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First of all, the resonance phenomenon is clearly visible. When the frequency ratio equals unity, the Dynamic 
Magnification factor becomes very large indicating that a small harmonic load can produce a large amplitude of vibration.  
Second, the influence of the damping ratio on the system response in resonance is significant. With a damping ratio of 
5%, the magnification factor is about 10; with a damping ratio of 50%, the magnification factor is reduced to 1.  
 
In general, the following can be concluded from this graphic [1]:  
The system response at low frequencies is stiffness-dependent. In the region of resonance, the response is damping-
dependent and at high frequencies, the response is governed by the system mass: mass-dependent.  
It is important to keep this in mind when attempting to reduce the vibration of a structure. For example, the application 
of increased damping will have little effect if the excitation and response frequencies are in a region well away from 
resonance, such as that controlled by the mass of the structure.  
 
The effect of resonance can also be illustrated in SCIA Engineer.  
In the project “Harmonic_Load_1”, the excitation frequency is 5 Hz. The eigenfrequency is 21.43 Hz. So this is not in the 
resonance area.  

 
To see the response in function of the frequency, we can create several load cases with other excitation frequency. You 
can easily do this by copying the existing load case and changing the excitation frequency. This is shown in the next 
example. 
 
 
 
------------------------------------------------------------------------------------------------------------------------------------------------------------- 
Example 05-2.esa 
 
Another common application of a harmonic load is a structure loaded with a plunger system or a motor. Both the 
reciprocating effect of the plunger and the rotating unbalance of the motor produce an exciting force of the inertia type 
of the system. 
For an unbalanced body of mass m, at an effective radius e, rotating at an angular speed ν, the exciting force F can be 
written as [1]: 

F = m୰ ∙ e ∙ νଶ 
(3.13) 

This is illustrated in following example. 
 
An electric motor with a mass of 500 kg is mounted on a simply supported beam with overhang. The beam has a cross-
section type HE240A and is manufactured in S 235 according to EC-EN. The beam has a length of 4 m and the overhang 
is 3 m.  
The motor has an unbalance of 0,6 kgm. The damping ratio of the system is taken as 10%. 

 

 
 
 
The motor can operate at speeds of 800, 1000 and 1200 rpm. For each of these speeds, the amplitude of forced vibration 
needs to be calculated to check, for example, if the vibrations induced by the motor are acceptable.  
 
One static load case is created: the self-weight of the beam. However, in order not to take the self-weight into account 
for the dynamic calculation, the volumetric mass of S235 can be set to 1 kg/m³ in the Material Library. This will render it 
easier to check the results through a manual calculation.  
 
A node has been added to the middle of the overhang to specify the location of the motor. 
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Step 1: functionality 
 
The first step in the Dynamic calculation is to activate the functionality Dynamics on the Functionality tab in the Project 
Data. 
 
 
Step 2: mass group 
 
The second step is to create a Mass Group. 
 

 
 
 
Step 3: masses 
 
After the Mass Group has been created; the 500 kg mass of the motor can be inputted in the middle of the overhang: 

 

 
 
 
Step 4: mass matrix 
 
Next, the Mass Group is put within a Combination of Mass Groups, which can be used for defining the harmonic loads at 
the different speeds: 
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Step 5: load cases definition 
 
After creating the Mass Combination, three harmonic load cases can be defined, one for each speed.  
Each load case uses the same Mass Combination and has the same damping specifications.  
The damping ratio is constant and equal to 10%. 
 
The forcing frequency is different for each load case and can be calculated from the given speeds: 
 

ν଼଴଴ = 800rpm ∗
2πrad

1rev
∗

1min

60s
= 83,78 rad

sൗ           =>  f଼଴଴ = 13,33Hz 

 

νଵ଴଴଴ = 1000rpm ∗
2πrad

1rev
∗

1min

60s
= 104,72 rad

sൗ           =>  fଵ଴଴଴ = 16,67Hz 

 

νଵଶ଴଴ = 1200rpm ∗
2πrad

1rev
∗

1min

60s
= 125,66 rad

sൗ           =>  fଵଶ଴଴ = 20,00Hz 
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Step 6: harmonic forces 
 
The parameters of the harmonic loads have been defined. What is left is inputting the amplitude of the three exciting 
forces.  
Using formula (3.13) these forces can be calculated from the forcing circular frequency and the mass unbalance. 
 

F଼଴଴ = m୰. e. ν଼଴଴
ଶ = 0,6kgm ∗ ቀ83,78 rad

sൗ ቁ
ଶ

= 4211,03N = 4,21kN 
 

Fଵ଴଴଴ = m୰. e. νଵ଴଴଴
ଶ = 0,6kgm ∗ ቀ104,72 rad

sൗ ቁ
ଶ

= 6579,74N = 6,58kN 
 

Fଵଶ଴଴ = m୰. e. νଵଶ଴଴
ଶ = 0,6kgm ∗ ቀ125,66 rad

sൗ ቁ
ଶ

= 9474,82N = 9,47kN 
 
The loads are inputted through Load > Point Force > In Node: 
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Step 7: mesh setup 
 
To obtain precise results for the dynamic calculation, the Finite Element Mesh is refined.  
This can be done through Calculation & Mesh / Mesh Settings. 
 

 
 
The Average number of tiles of 1D element is set to 10. 

 
 
Step 8: solver setup 
 
The last step before launching the calculation is setting the amount of eigenmodes to be calculated. For this example, 
only one eigenmode is required so in Calculation & Mesh / Solver Settings the number of frequencies is set to 1.  
To compare the results with a manual calculation, the shear force deformation is neglected. 
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Step 9: modal analysis 
 
All steps have been executed so the Linear calculation and modal analysis can be started through Calculation, mesh > 
Calculation. 
 

 
 
 
This gives the following results: 
 

 
 
The nodal deformations for the harmonic loads at the location of the motor are the following: 
 

- At 800 rpm: 
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- At 1000 rpm: 
 

 
 

- At 1200 rpm: 
 

 
 
As stated in the previous example, it is important to keep in mind that the signs are not relevant since a vibration occurs 
on both sides of the equilibrium position. 
 
 
 
Manual calculation 
 
In order to check the results of SCIA Engineer, a manual calculation is performed [15].  
First, the calculated eigen frequency is checked using formula (2.3)  
Using default engineering tables [11], the maximum static deformation of a simply supported beam with length L, an 
overhang with length a and loaded with a load F at the end of the overhang is given as: 
 

δ୫ୟ୶ =
Fa²(L + a)

3EI
 

(3.14) 
 

 
 
 
The rigidity k of this system can then be calculated: 

k =
F

δ୫ୟ୶

=
3EI

a²(L + a)
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Where: 
 L = 4 m = 4000 mm 
 a = 1,5 m = 1500 mm 
 E = 210000 N/mm² 
 I = 77600000 mm4 
 
So:  

k =
3 ∗ ቀ210000 N

mmଶൗ ቁ ∗ (77600000mmସ)

(1500mm)ଶ ∗ (4000mm + 1500mm)
= 3950,55 N

mmൗ = 3950545,45 N
mൗ  

 
Applying formula (2.3): 

ω = ඨ
k

m
= ඨ

3950545,45 N
mൗ

500kg
= 88,89 rad

sൗ  

 
So: 

f =
ω

2π
= 𝟏𝟒, 𝟏𝟓𝐇𝐳 

 
This result corresponds exactly to the result calculated by SCIA Engineer.  
 
Applying formula (3.8) the frequency ratios can be calculated for each motor speed: 
 

r଼଴଴ =
ν଼଴଴

ω
=

83,78 rad
sൗ

88,89 rad
sൗ

= 0,9425 

 

rଵ଴଴଴ =
νଵ଴଴଴

ω
=

104,72 rad
sൗ

88,89 rad
sൗ

= 1,1781 

 

rଵଶ଴଴ =
νଵଶ଴଴

ω
=

125,66 rad
sൗ

88,89 rad
sൗ

= 1,4137 

 
The frequency ratios can then be used in formula (3.9) to calculate the Dynamic Magnification Factors. When also 
applying formula (3.4) the Dynamic Amplitude can be calculated for each speed: 
 

Y଼଴଴ =

F଼଴଴
kൗ

ඥ(1 − r଼଴଴
ଶ )ଶ + (2r଼଴଴ξ)ଶ

=

4211,03N
3950545,45 N

mൗ൘

ඥ(1 − 0,9425²)ଶ + (2 ∗ 0,9425 ∗ 0,10)ଶ
= 4,86mm 

 

Yଵ଴଴଴ =

Fଵ଴଴଴
kൗ

ඥ(1 − rଵ଴଴଴
ଶ )ଶ + (2rଵ଴଴଴ξ)ଶ

=

6579,74N
3950545,45 N

mൗ൘

ඥ(1 − 1,1781²)ଶ + (2 ∗ 1,1781 ∗ 0,10)ଶ
= 3,67mm 

 

Yଵଶ଴଴ =

Fଵଶ଴଴
kൗ

ඥ(1 − rଵଶ଴଴
ଶ )ଶ + (2rଵ଴଴଴ξ)ଶ

=

9474,82N
3950545,45 N

mൗ൘

ඥ(1 − 1,4137²)ଶ + (2 ∗ 1,4137 ∗ 0,10)ଶ
= 2,31mm 

 
 
These results correspond exactly to the results calculated by SCIA Engineer. 
 
 
 
In the same way as in the previous example, the calculation can be repeated for several angular velocities. The result is 
shown graphically on the following figure:  
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Amplitude – velocity response 

 
 
NB: 
------------------------------------------------------------------------------------------------------------------------------------------------------------- 
The main feature to notice is the decrease in vibration amplitude when the forcing frequency increases due to moving 
away from resonance [15]. 
------------------------------------------------------------------------------------------------------------------------------------------------------------- 
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CHAPTER 7 : ANNEX A : EARTHQUAKE MAGNITUDE 
 
 
 
To assess the magnitude of earthquakes, a scale to describe the energy released during an earthquake was developed by 
Richter in the 1930s. This is named the Richter scale and it is the most common scale used today to describe earthquakes 
[26].  
 
The magnitude of an earthquake on the Richter scale is determined by a so-called Wood-Anderson seismograph 
maximum amplitude, where M = log(a), and a is the maximum amplitude [μm] at a 100 km distance from the epicentre. 
 
The seismic action on buildings cannot be described by the Richter scale magnitude and this may not be used in the 
design. However, Housner in 1970 developed empirical relationships between the magnitude, the duration and the peak 
ground acceleration to be used in design: 
 
 

Magnitude on the 
Richter scale 

Peak ground 
acceleration (% g) 

Duration (s) 

5,0 9 2 
5,5 15 6 
6,0 22 12 
6,5 29 18 
7,0 37 24 
7,5 45 30 
8,0 50 34 
8,5 50 37 
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CHAPTER 8 : ANNEX B : NUMERICAL DAMPING VALUES 
 
 
 
 
In this annex, some numerical values for structural damping are given. 
 
 
 

8.1 EC8 – Part 6 
 
 
EC8 part 6 (ENV 1998-6:2003 Annex B) suggest the following values for the damping ratio: 

 
Structural material Damping ratio 𝝃 
Steel elements 1% - 4% 
Concrete elements 2% - 7% 
Ceramic cladding 1,5% - 5% 
Brickwork lining 3% - 10% 

 
 
 
 

8.2 EC1 – Part 2-4 
 
 
Other values for damping are suggested by EC1 – part 2-4 (ENV 1991-2-4: 1995 Annex C). 
The fundamental logarithmic decrement d is given by: 
 

d = ds + da + dd 
 
Where: 

- ds: fundamental structural damping 
- da: fundamental aero dynamical damping 
- dd: fundamental damping due to special devices 

 
The structural damping is given by: 

dୱ = aଵ. nଵ + bଵ 
 

dୱ ≥  δ୫୧୬ 
 
Where: 

- ηଵ: fundamental flexural frequency. 
- aଵ, bଵ, δ୫୧୬: parameters given in the following table for different structural types. 

 
 

Structural type 𝐚𝟏 𝐛𝟏 𝛅𝐦𝐢𝐧 

Reinforced concrete buildings 0,045 0,030 0,080 
Steel buildings 0,045 0 0,050 
Mixed structures : concrete + steel 0,080 0 0,080 
Reinforced concrete towers 0,050 0 0,025 
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Lattice steel towers 0 0,030 0 
Reinforced concrete chimneys 0,075 0 0,030 
Prestressed steel cable 0 0,010 0 
Unlined welded steel stacks 0 0,015 0 
Steel stack with one liner or thermal insulation 0 0,025 0 
Steel stack with two or more liners 0 0,030 0 
Steel with brick liner 0 0,070 0 
Coupled stacks without liner 0 0,015 0 
Guyed steel stack without liner 0 0,040 0 

Steel bridges 

Welded 0 0,020 0 
High resistance bolts 0 0,030 0 
Ordinary bolts 0 0,050 0 

Concrete bridges 
Prestressed without cracks 0 0,040 0 
With cracks 0 0,100 0 

Bridge cables 
Parallel cables 0 0,006 0 
Spiral cables 0 0,020 0 

 
 
For example, for a steel building with first frequency of 3Hz, the logarithmic decrement is: 

0,045*3 + 0 = 0,135  (> 0,05)  
 
 
 

8.3 Reference [22] 
 
Other values for the logarithmic decrement are suggested by the reference [22]: 

 
Structural material Logarithmic decrement 
Steel (welded) 0,025 
Reinforced or prestressed concrete 0,056 
Brickwork 0,25 
Wood 0,13 

 
In this reference, preliminary formulas can also be found for aerodynamic damping and damping caused by the 
foundation. 
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CHAPTER 9 : ANNEX C : MANUAL CALCULATIONS SPECTRAL ANALYSIS 
 
 
 

9.1 Spectral analysis of 3-2 example (example C-1) 
 
 
In this paragraph, the seismic results of SCIA Engineer are calculated manually to give a clear understanding of the applied 
formulas. All formulas can be found in the paragraph “Calculation Protocol” of this chapter.  
 
The reference project is not completely the same as the one described in example 3-2. The differences will be shown first 
before starting the manual calculation. 
 
 
 

 9.1.1 Seismic load case 

 
The properties which have been used in the seismic load case can be seen here:  
 

  
 
A different acceleration factor has been used. This reduces the accelerations given by the spectrum. 
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 9.1.2 Spectrum 

 
A manual seismic spectrum is used: 
 

 
 

 
 
 

 9.1.3 Finite element mesh and solver setup 

 
The finite element mesh has not been refined: 
 

 
 
The solver also has not been changed to neglect shear deformations. 
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9.2 Manual calculation of 3-2 example (example C-1) 
 
 

 9.2.1 Verification of modal participation factors 

 
First, the Modal Participation Factors of the Eigen Frequency Calculation Protocol are verified.  
 
As shown in the Deformation of Nodes, the normalized modal shapes for both modes were the following: 
 

   
 

{𝜑ଵ} = ൞

0,039111
0,020803
0,006128

0

ൢ              {𝜑ଶ} = ൞

−0,020233
0,030451
0,025755

0

ൢ 

 
Participation factor: 

γ୩,(୨) = {ϕ୩}୘ ∗ {m} 
 

γ୶,(ଵ) = 0,039111 ∗ 500 + 0,0200803 ∗ 500 + 0,006128 ∗ 500 = 33,021 
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γ୶,(ଶ) = −0,020233 ∗ 500 + 0,030451 ∗ 500 + 0,025755 ∗ 500 = 17,984 
 

Effective mass: 
M୩,ୣ୤,(୨) = γ୩,(୨)

ଶ  
 

M୶,ୣ୤,(ଵ) = (33,021)ଶ = 1090,39 
M୶,ୣ୤,(ଶ) = (17,984)ଶ = 323,42 

 
Participation mass ratio: 

L୩,(୨) =
M୩,ୣ୤,(୨)

M୩,୲୭୲

 

 

L୶,(ଵ) =
1090,39

500 + 500 + 500
= 0,7269 

 

L୩,(୨) =
323,42

500 + 500 + 500
= 0,2156 

 
 
These results correspond to the results obtained by SCIA Engineer. 
They can be found in SCIA Engineer in the Calculation protocol (Eigen frequency): 
 

 
 
 
 

 9.2.2 Details of the seismic calculation 

 
Next, the details of the seismic calculation found in the Calculation Protocol for the Linear Calculation are verified: 
 

 
 
The spectral acceleration Sax for both modes is calculated using the defined seismic spectrum. 
 
The spectrum for ground type B with a behaviour factor q = 2 gives the following values for Sd(T)/α: 
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The first mode has a period T1 of 1,9036 s => Sd(T1)/α = 0,5918 m/s² 
The second mode has a period T2 of 0,2920 s => Sd(T2)/α = 1,25 m/s² 
 
In this example, the coefficient of acceleration α was 0,35 

=> Sax,(1) = 0,5918m/s² * 0,35 = 0,2071 m/s² 
=> Sax,(2) = 1,25m/s² * 0,35 = 0,4375 m/s² 

 
These results correspond to the results obtained by SCIA Engineer. The small deviation is due to the fact that SCIA 
Engineer uses more decimals. In the further analysis, the spectral accelerations of SCIA Engineer are used. 
 
Mode coefficient: 

G୩,(୨) =
Sୟ,୩,(୨) ∗ γ୩,(୨)

ω(୨)
ଶ  

 

G୶,(ଵ) =
0,2019 ∗ 33,021

(3,3007)²
= 0,6119 

 

G୶,(ଶ) =
0,4380 ∗ 17,984

(21,5192)²
= 0,0170 

 
These results correspond to the results obtained by SCIA Engineer. 
 
The necessary intermediate results are calculated so the response of each mode can now be obtained.  
First, for each mode, the lateral force in each node can be calculated. These lateral forces can then be used to calculate 
the base shear and overturning moment. 
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Mode 1: 
 
Lateral force in node i: 

F୧,୩,(୨) = m୧,୩,(୨) ∗ Sୟ,୩,(୨) ∗ γ୩,(୨) ∗ ϕ୧,୩,(୨) 
 

Fସ,୶,(ଵ) = 500kg ∗
0,2019m

sଶ
∗ 33,021 ∗ 0,039111 = 130,38N 

Fଷ,୶,(ଵ) = 500kg ∗
0,2019m

sଶ
∗ 33,021 ∗ 0,020803 = 69,35N 

Fଶ,୶,(ଵ) = 500kg ∗
0,2019m

sଶ
∗ 33,021 ∗ 0,006128 = 20,43N 

Fଵ,୶,(ଵ) = 0N 
 
Base shear force: 

F୩,(୨) = ෍ F୧,୩,(୨)

୧

 

 
F୶,(ଵ) = 130,38N + 69,35N + 20,43N = 220,129N = 0,2201kN 

 
Overturning moment in node i: 

Mi,k,(j) = Fi,k,(j) * zi 

 
Mସ,୷,(ଵ) = −130,38N ∗ 12m = −1564,50Nm 

Mଷ,୷,(ଵ) = −69,35N ∗ 8m = −554,77Nm 
Mଶ,୷,(ଵ) = −20,43N ∗ 4m = −81,71Nm 

Mଵ,୷,(ଵ) = 0N. m 
 
Overturning moment: 

M୩,(୨) = ෍ M୧,୩,(୨)

୧

 

 
M୷,(ଵ) = −1564,50Nm − 554,77Nm − 81,71Nm = −2200,89Nm = −2,2009kNm 

 
 
NB: 
________________________________________________________________________________________________ 
In this mode, all lateral forces in the nodes are oriented the same way. The lateral loads in the nodes are in this case 
oriented in the negative X-direction so the Base Shear Force is oriented in the positive X-direction. The lateral loads in the 
nodes thus produce a negative Overturning Moment around the Y-axis. An example of this principle can be found in 
reference [26]. 
 
However, as stated in the previous chapters, the signs have no absolute importance since vibration amplitudes always 
occur on both sides of the equilibrium position. 
________________________________________________________________________________________________ 
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Mode 2: 
 
Lateral force in node i: 

F୧,୩,(୨) = m୧,୩,(୨) ∗ Sୟ,୩,(୨) ∗ γ୩,(୨) ∗ ϕ୧,୩,(୨) 
 

Fସ,୶,(ଶ) = 500kg ∗
0,4380m

sଶ
∗ 17,984 ∗ −0,020233 = −79,69N 

Fଷ,୶,(ଶ) = 500kg ∗
0,4380m

sଶ
∗ 17,984 ∗ 0,030451 = 119,93N 

Fଶ,୶,(ଶ) = 500kg ∗
0,4380m

sଶ
∗ 17,984 ∗ 0,025755 = 101,44N 

Fଵ,୶,(ଶ) = 0N 
 
Base shear force: 

F୩,(୨) = ෍ F୧,୩,(୨)

୧

 

 
F୶,(ଶ) = −79,69N + 119,93N + 101,44N = 141,68N = 0,1417kN 

 
Overturning moment in node i: 

Mi,k,(j) = Fi,k,(j) * zi 

 
Mସ,୷,(ଶ) = −79,69N ∗ 12m = −956,25Nm 
Mଷ,୷,(ଶ) = −119,93N ∗ 8m = −959,45Nm 
Mଶ,୷,(ଶ) = −101,44N ∗ 4m = −405,74Nm 

Mଵ,୷,(ଶ) = 0N. m 
 
Overturning moment: 

M୩,(୨) = ෍ M୧,୩,(୨)

୧

 

 
M୷,(ଶ) = 956,25Nm − 959,45Nm − 405,74Nm = −408,94Nm = −0,4089kNm 

 
To obtain the global response, the modal responses need to be combined. In this example the SRSS-method was used: 
 

F୶ = ට൫F୶,(ଵ)൯
ଶ

+ ൫F୶,(ଶ)൯
ଶ

= ඥ(0,2201kN)ଶ + (0,1417kN)ଶ = 0,2618kN 

 

M୷ = ට൫M୷,(ଵ)൯
ଶ

+ ൫M୷,(ଶ)൯
ଶ

= ඥ(−2,2009kN)ଶ + (−0,4089kN)ଶ = 2,238kN. m 

 
 
These results correspond almost exactly to the results obtained by SCIA Engineer. We will show them again: 
 

 
 
As specified in the theory, these same principles can now be used to calculate the displacements and accelerations for 
each mode. These modal responses can then be combined again to obtain the global displacements and accelerations of 
the structure. 
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Mode 1: 
 
Displacement in node i: 

u୧,୩,(୨) = G୩,(୨). ϕ୧,୩,(୨) 
 

uସ,୶,(ଵ) = 0,6119 ∗ 0,039111 = 0,02393m = 23,93mm 
uଷ,୶,(ଵ) = 0,6119 ∗ 0,020803 = 0,01273m = 12,73mm 
uଶ,୶,(ଵ) = 0,6119 ∗ 0,006128 = 0,00375m = 3,75mm 

uଵ,୶,(ଵ) = 0mm 
 
Acceleration in node i: 

ü୧,୩,(୨) = ω(୨)
ଶ . G୩,(୨). ϕ୧,୩,(୨) 

 
aସ,୶,(ଵ) = 3,3007ଶ ∗ 0,6119 ∗ 0,039111 = 0,26073m s²⁄ = 260,73mm/sଶ 
aଷ,୶,(ଵ) = 3,3007ଶ ∗ 0,6119 ∗ 0,020803 = 0,13868m s²⁄ = 138,68mm/sଶ 
aଶ,୶,(ଵ) = 3,3007ଶ ∗ 0,6119 ∗ 0,006128 = 0,04085m s²⁄ = 40,85mm/sଶ 

aଵ,୶,(ଵ) = 0mm/s² 
 
Mode 2: 
 
Displacement in node i: 

u୧,୩,(୨) = G୩,(୨). ϕ୧,୩,(୨) 
 

uସ,୶,(ଶ) = 0,0170 ∗ (−0,020233) = −0,00034m = −0,34mm 
uଷ,୶,(ଶ) = 0,0170 ∗ 0,030451 = 0,00052m = 0,52mm 
uଶ,୶,(ଶ) = 0,0170 ∗ 0,025755 = 0,00044m = 0,44mm 

uଵ,୶,(ଶ) = 0mm 
 
Acceleration in node i: 

ü୧,୩,(୨) = ω(୨)
ଶ . G୩,(୨). ϕ୧,୩,(୨) 

 
aସ,୶,(ଶ) = 21,5192ଶ ∗ 0,0170 ∗ (−0,020233) = − 0,15928m sଶ⁄ = −159,28mm/sଶ 

aଷ,୶,(ଶ) = 21,5192ଶ ∗ 0,0170 ∗ 0,030451 = 0,23972m s²⁄ = 239,72mm/sଶ 
aଶ,୶,(ଶ) = 21,5192ଶ ∗ 0,0170 ∗ 0,025755 = 0,20275m s²⁄ = 202,75mm/sଶ 

aଵ,୶,(ଶ) = 0mm/s² 
 
To obtain the global response, the modal responses need to be combined. In this example the SRSS-method was used. 
 
Displacements: 
 

uସ,୶ = ට൫uସ,୶,(ଵ)൯
ଶ

+ ൫uସ,୶,(ଶ)൯
ଶ

= ඥ(23,93)ଶ + (−0,34)ଶ = 23,93mm 

uଷ,୶ = ට൫uଷ,୶,(ଵ)൯
ଶ

+ ൫uଷ,୶,(ଶ)൯
ଶ

= ඥ(12,73)ଶ + (0,52)ଶ = 12,74mm 

uଶ,୶ = ට൫uଶ,୶,(ଵ)൯
ଶ

+ ൫uଶ,୶,(ଶ)൯
ଶ

= ඥ(3,75)ଶ + (0,44)ଶ = 3,78mm 

uଵ,୶ = 0 
 
Accelerations: 
 

aସ,୶ = ට൫aସ,୶,(ଵ)൯
ଶ

+ ൫aସ,୶,(ଶ)൯
ଶ

= ඥ(260,73)ଶ + (−159,28)ଶ = 305,53mm/s² 

aଷ,୶ = ට൫aଷ,୶,(ଵ)൯
ଶ

+ ൫aଷ,୶,(ଶ)൯
ଶ

= ඥ(138,68)ଶ + (239,72)ଶ = 276,94mm/s² 

aଶ,୶ = ට൫aଶ,୶,(ଵ)൯
ଶ

+ ൫aଶ,୶,(ଶ)൯
ଶ

= ඥ(40,85)ଶ + (202,75)ଶ = 206,82mm/s² 

aଵ,୶ = 0mm/s² 
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The main menu Results / Dynamics / Seismic Detailed, or the below icon, was designed to view these modal displacements 
and accelerations.  
 

 
 
 
In the Properties Window, the options for viewing the modal results can be set: 
 

         
 

- In the field « Load Cases », a seismic load case or a mass combination can be selected. 
 

- The filed « Modal results » allow choosing between the displacements or accelerations. 
 

- « Evaluation for » is used to specify which results need to be shown: the results for a specific Eigenmode, 
the results for All Eigenmodes or the global, Summarized results.  

 
 
The results for each mode and the summarized results are shown on the next pages for both the displacement and the 
accelerations. 
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Displacements: 
 
 
 
Mode 1: 
 

 
 
 
Mode 2: 
 

 
 
 
Summarized: 
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Accelerations: 
 
 
 
Mode 1: 

 

 
 
 
Mode 2: 
 

 
 
 
Summarized: 
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When comparing the results of the manual calculation and those obtained by SCIA Engineer, it is clear that both 
calculations correspond. 
 
 
As specified in the theory, when using the CQC-method, a damping spectrum needs to be defined. To illustrate this, the 
above example is calculated again, but now using the CQC-method for the modal combination. 
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CHAPTER 10 : ANNEX D : MISSING MASS IN NODES 
 
 
 
As mentioned before, the sum of the effective modal masses for the modes taken into account must amount to at least 
90% (EN 1998-1-1 art.4.3.3.3). The user can try to achieve this with the following possibilities: 

- Take more natural frequencies into account 
- Assign mass more to nodes/connection instead of beams (to avoid local eigenmodes). 

 
The mass which has not been taken into account (for example, if the effective modal mass is 90%, then there is 10% not 
taken into account), can be treated in 3 possible different ways in SCIA Engineer: 
 

 
 
 
The used method is set in each seismic load case and is again displayed in the linear calculation protocol. Let’s take as 
example that the effective modal mass in a direction is 90%. Then how can the other 10% be treated? 

- If the option « Use residual mode » is not ticked: in this case, the 10% would be ignored. We would only 
take into account 90% of the mass of the structure to calculate the effects of an earthquake.  

- If the option « Use residual mode » is ticked: in this case, a ‘fictive’ mode corresponding to the combination 
of all missing modes can be calculated. But since these missing modes are over different natural frequencies, 
the last found frequency will also be the natural frequency of this mode. In the calculation, the forces in this 
mode will be calculated in the same way as in the other modes.  

 
In the following examples the differences are explained in detail.  
 
In these projects the following general principle is used:  
First of all, a seismic spectrum is introduced. For this spectrum the modal displacements are calculated for each mode, 
in this case there are 2 modes. Afterwards, the displacements are transformed in real load cases. For these 2 load cases 
the results of the internal forces and reactions can be asked. According to the specific analysis method, the results are 
summed. On that way, one can compare these results with the output of the internal forces of the seismic load case. 
This will be done with the following three types of ‘mass in analysis’. 
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10.1 Spectral analysis example without « residual mode » 
 
 

 
------------------------------------------------------------------------------------------------------------------------------------------------------------- 
Example D-1.esa: spectral analysis without residual mode 

 
If the option ‘Residual mass’ is not ticked, the standard calculation is used. In this case, the participation mass from all 
modes is taken into account and the user has to consider the 90% rule of the Eurocode. In other words, using this method 
it’s important that the total amount of the masses in X, Y and Z are sufficient. 
 
In the example, a structure (3mx6m), made of beams and columns with rectangular cross-sections (beams cross-section 
15*30 except B4 which is 20*60; columns cross-section 15x15 except B3 which is 20*60), is subjected to dynamic forces. 
The members are manufactured in C25/30 according to EC-EN. The height of each column is 5m. 
 
Next, a seismic load case is introduced. The seismic spectrum acts in 3 directions. An acceleration of 2 m/s² is given in 
function of the frequency.  
The evaluation method SRSS is used together without the option ‘Residual mass’. 
 
The eigen frequency analysis gives the following output: 
 

 
 
Deformation for mass combination CM1/1-1,64: 
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Deformation for mass combination CM1/2-1,90: 
 

 
 

 
 
The masses of the participating nodes (N2, N4, N5 and N7) are needed. The mass is attributed to the end nodes of each 
member. 

 
 

Calculation of mass X for N2: 
Mass X = 2500kg/m3 * [(2,5 * 0,15 * 0,15) + (3 * 0,3 * 0,15) + (1,5 * 0,3 * 0,15)] 

= 646,875 kg 
 

The total mass matrix is: 
 

Node Mass x 
(kg) 

Mass y 
(kg) 

Mass z 
(kg) 

N2 646,875 646,875 646,875 
N4 646,875 646,875 646,875 
N5 787,5 787,5 787,5 
N7 1537,5 1537,5 1537,5 

Total 3618,75 3618,75 3618,75 
 

The modal participation factor is calculated as: 
γ୩(୨) = {ϕ୩}୘|γ୩(୨) = {ϕ୩}୘{m} 
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Calculation of γ୶ for mode 1: 

൛ϕ୶,(ଵ)ൟ =

⎩
⎪⎪
⎨

⎪⎪
⎧

0
−0,001267

0
−0,000778
−0,001265

0
−0,000777⎭

⎪⎪
⎬

⎪⎪
⎫

          and        {m} =

⎩
⎪⎪
⎨

⎪⎪
⎧

0
646,875

0
646,875

787,5
0

1537,5 ⎭
⎪⎪
⎬

⎪⎪
⎫

           

So: 
γ୶,(ଵ) = −0,001267 ∗ 647 − 0,000778 ∗ 647 − 0,001265 ∗ 788 − 0,000777 ∗ 1538 

γ୶,(ଵ) = −3,514 
 

The participation factor matrix is: 
 
(j) 

Units 
γ୶ 

(kg1/2) 
γ௬ 

(kg1/2) 
γ௭ 

(kg1/2) 
1 -3,514 55,959 10,158 
2 20,115 -3,812 5,614 

 
Out of this matrix the effective masses can be calculated:  

Mୣ୤,୩,(୨) = γ୩,(୨)
ଶ  

 
Calculation of Mef for mode 1 in direction x: 

 
Mୣ୤,୶,(ଵ) = −3,514ଶ = 12,346 

 
(j) 

Units 
Mୣ୤,୶ 
(kg) 

Mୣ୤,୷ 
(kg) 

Mୣ୤,୸ 
(kg) 

1 12,346 3131,374 103,182 
2 404,603 14,533 31,517 

 
The formula for the participation mass ratio is as follows: 

 

L୩,(୨) =
Mୣ୤,୩,(୨)

M୲୭୲,୩

 

 

L୩,(ଵ) =
12,346

3618,75
= 0,0034 

 
(j) 

Units 
L୶ 
(-) 

L୷ 
(-) 

L୸ 
(-) 

1 0,0034 0,8653 0,0285 
2 0,1118 0,0040 0,0087 

 
The acceleration response spectrum S has the constant value of 2m/s² : 

 
(j) 

Units 
S୶ 

(m/s²) 
S୷ 

(m/s²) 
S୸ 

(m/s²) 
1 2 2 2 
2 2 2 2 

 
Calculation of mode coefficient in each direction: 

G୩,(୨) =
Sୟ,୩,(୨) ∗ γ୩,(୨)

ω(୨)
ଶ  
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For example for direction x and mode 1: 

G୶,(ଵ) =
2 ∗ −3,514

166,4
= −0,042 

 
(j) 

Units 
Gx 

(m*kg1/2) 
Gy 

(m*kg1/2) 
Gz 

(m*kg1/2) 
G 

(m*kg1/2) 
1 -0,042 0,673 0,122 0,7524 
2 0,178 -0,034 0,050 0,1941 

 
Now, the lateral forces can be calculated in each node:  

F୧,୩,(୨) = m୧,୩,(୨) ∗ ü୧,୩,(୨) = m୧,୩,(୨) ∗ G(୨) ∗ ϕ୧,୩,(୨) ∗ 𝜔(௝)
ଶ  

 
As example, this is calculated for node 2 in direction X: 

F୒ଶ,୶,(ଵ) = 646,875 ∗ 0,7524 ∗ (−0,001267) ∗ 166,4 = −102,6N 
 

Mode1 
Node Fx (1) 

(N) 
Fy (1) 
(N) 

Fz (1) 
(N) 

N2 -102,6 1227,3 3,4 
N4 -63,0 1227,3 -2,9 
N5 -124,7 1541,8 1271,1 
N7 -149,6 3010,0 0,2 

Total -439,9 7006,3 1271,8 
 

Mode2 
Node Fx (2) 

(N) 
Fy (2) 
(N) 

Fz (2) 
(N) 

N2 379,1 -558,3 0,3 
N4 12,2 -558,3 0,6 
N5 461,4 321,6 245,8 
N7 29,0 627,8 -0,1 

Total 881,7 -167,1 246,1 
 

The shear forces in direction X, Y and Z:  

F୩,(୨) = ෍ 𝐹௜,௞,(௝)𝑙

௜

 

 
For mode 1 in direction x: 

F୶,(ଵ) =
−439,9

1000
= −0,4399kN 

 
(j) 

Units 
Fx 

(kN) 
Fy 

(kN) 
Fz 

(kN) 
1 -0,4399 7,0063 1,2718 
2 0,8817 -0,1671 0,2461 

Total  0,99 7,01 1,30 
 

The overturning moment in each node for each direction is:  
M୧,୩,(୨) = F୧,୩,(୨) ∗ z୧ 

 
M୒ଶ,୶,(ଵ) = F୒ଶ,୷,(ଵ) ∗ (height − overturning height) 

M୒ଶ,୶,(ଵ) = 1227,3N ∗ (5m − 0m) 
M୒ଶ,୶,(ଵ) = −6136,4N. m 
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The other values are: 
 
Mode1 

Node Mx (1) 
(N.m) 

My (1) 
(N.m) 

N2 -6136,4 513,1 
N4 -6136,4 315,1 
N5 -7709,0 623,6 
N7 -15049,9 747,9 

 
Mode2 

Node Mx (2) 
(N.m) 

My (2) 
(N.m) 

N2 2791,4 -1895,4 
N4 2791,4 -60,8 
N5 -1608,1 -2307,1 
N7 -3139,2 -145,2 

 
The sum of the moments for each node gives the overturning moment in base: 

 
(j) 

Units 
M୶ 

(kN) 
M୷ 
(kN) 

1 -35,0317 2,1997 
2 0,8355 -4,4085 

Total 35,04 4,93 
 
The moments for each separate mode are combined with the SRSS-method. 

 
Calculation of the modal displacement: 

u୧,୩,(୨) = G(୨) ∗ ϕ୩,(୨) 
 

For instance for node 2 in direction X and first mode: 
൛G(ଵ)ൟ = {0,7524}          and        ൛ϕ୒ଶ,୶,(ଵ)ൟ = {−0,001267}           

So: 
u୒ଶ,୶,(ଵ) = (0,7524 ∗ −0,001267) ∗ 1000 = −0,95mm 

 
Other values are: 

 
Mode1 

Node ux 
(mm) 

uy 
(mm) 

uz 
(mm) 

N2 -0,95 11,40 0,03 
N4 -0,59 11,40 -0,03 
N5 -0,95 11,77 9,70 
N7 -0,58 11,77 0,00 
 

Mode2 
Node ux 

(mm) 
uy 

(mm) 
uz 

(mm) 
N2 2,60 -3,82 0,00 
N4 0,08 -3,82 0,00 
N5 2,59 1,81 1,38 
N7 0,08 1,81 0,00 
 

Total  
Node ux 

(mm) 
uy 

(mm) 
uz 

(mm) 
N2 2,76 12,03 0,03 
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N4 0,59 12,03 0,03 
N5 2,76 11,90 9,80 
N7 0,59 11,90 0,00 

 
Calculation of the modal acceleration: 

ü୧,୩,(୨) = ω(୨)
ଶ ∗ G(୨) ∗ ϕ୩,(୨) 

 
For instance for node 2 in direction X and first mode: 

ü୒ଶ,୶,(ଵ) = −0,95 ∗ 166,4 = −158,6mm/s² 
 
Mode1 

Node ax 
(mm/s²) 

ay 
(mm/s²) 

az 
(mm/s²) 

N2 -158,6 1897,2 5,3 
N4 -97,4 1897,2 -4,5 
N5 -158,4 1957,8 1645,2 
N7 -97,3 1957,7 0,1 
 
Mode2 

Node ax 
(mm/s²) 

ay 
(mm/s²) 

az 
(mm/s²) 

N2 586,0 -863,0 -0,4 
N4 18,8 -863,0 1,0 
N5 585,9 408,4 312,1 
N7 18,9 408,4 0,0 
 
Total  

Node ax 
(mm/s²) 

ay 
(mm/s²) 

az 
(mm/s²) 

N2 607,1 2084,3 5,3 
N4 99,2 2084,3 4,6 
N5 606,9 2000,0 1644,1 
N7 99,1 1999,9 0,1 

 
Next, the displacements are inputted on the structure by means of a load case:  
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For these load cases the following internal forces are computed:  
 

 

 
 
According to the SRSS-method the following formula is used: 

R୲୭୲ = ඩ෍ R(୨)
ଶ

୒

୨ୀଵ

 

 
Take for instance the normal force in member B1: 

N୲୭୲ = ඥ(4,38kN)ଶ + (−0,27kN)ଶ = 4,39kN 
 

 
 
These values correspond with the internal forces for the seismic load case in the project.  
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The same can be done for the reactions: 
 

 
 

 
 
Calculation of the reaction for N1: 

R୶ = ඥ(−0,36kN)ଶ + (−0,36kN)ଶ = 0,51kN 
 

 
 
After verifying the results for the seismic load case, we can conclude that these values of the manual calculation 
correspond to the calculated values by SCIA Engineer. 
 
------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 
 
 
 

10.2 Spectral analysis example with « residual mode » 
 
 
------------------------------------------------------------------------------------------------------------------------------------------------------------- 
Example D-2.esa: spectral analysis with residual mode 
 
If there is too less mass taken into account with the standard method, more mass will be added to satisfy the 
prescriptions of the EC.  
The aim of this method is to evaluate the missing mass as an extra mode which is computed as an equivalent static load 
case. The static load case represents the weight of the missing mass under the cut-off acceleration. Afterwards it’s 
summed depending the selected rule SRSS, CQC, MAX. 
 
This missing mass is taken in the seismic analysis as an extra mode which represents the weight of the missing mass. The 
modal result of this mode is computed by a static equivalent load case. 
 
The effective masses are calculated for each separate node. In the other method, the effective mass was determined for 
each direction in each mode. Now, this parameter will be calculated for each different node in direction X,Y and Z for 
each mode. Later, this missing mass will be taken into account by means of an extra load case. 
 
Effective mass in node: 

Mୣ୤୤,୩,(୨),୧ =
M୩,୧ ∗ φ୩,(୨),୧ ∗ Mୣ୤୤,୩,(୨)

1000 ∗ γ୩,୨

 

 
Calculation of the effective mass in direction X for mode 1 and N2: 
 

Mୣ୤୤,୒ଶ,୶,(ଵ) =
646,875kg ∗ (−12,67) ∗ 12,346

10000 ∗ (−3,514)
= 2,9 

 



Advanced Training - Dynamics 

160 

Effective mass in nodes (k direction, j mode): 
 
Mode 1 

Node Mx 
(kg) 

My 
(kg) 

Mz 
(kg) 

N2 2,9 548,5 0,3 
N4 1,8 548,5 -0,2 
N5 3,5 689,1 103,1 
N7 4,2 1345,3 0 

Total 12,346 3131,374 103,182 
 
Mode 2 

Node Mx 
(kg) 

My 
(kg) 

Mz 
(kg) 

N2 174,0 48,6 0 
N4 5,6 48,6 0,1 
N5 211,7 -28,0 31,5 
N7 13,3 -54,6 0 

Total 404,60 14,53 31,52 
 
Mode 1 & 2 

Node Mx 
(kg) 

My 
(kg) 

Mz 
(kg) 

N2 176,8 597,1 0,2 
N4 7,4 597,1 -0,2 
N5 215,2 661,1 134,6 
N7 17,5 1290,7 0 

Total 416,9494 3145,9065 134,6994 
 
 
The missing mass is the difference between the total mass for each node minus the effective mass: 

M୫୧ୱୱ୧୬୥,୒ଶ୶ = 646,9 − 176,8 = 470kg 
 

Node Mx 
(kg) 

My 
(kg) 

Mz 
(kg) 

N2 470,0 49,8 646,6 
N4 639,5 49,8 647,0 
N5 572,3 126,4 652,9 
N7 1520,0 246,8 1537,5 
 

Out of these missing masses, load cases are generated. This by the formula: 
Load case୧,୩ = M୫୧ୱୱ୧୬୥,୧,୩ ∗ S୩,ୡ୳୲୭୤୤ 

 
Node Fx 

(kN) 
Fy 

(kN) 
Fz 

(kN) 
N2 0,940 0,100 1,293 
N4 1,279 0,100 1,294 
N5 1,145 0,253 1,306 
N7 3,040 0,494 3,075 

Total 6,4036 0,9457 6,9681 
 

NB: The cut-off acceleration is the acceleration of the cut-off frequency, this the last calculated frequency. 
 

Calculation of the mode coefficient: 

G୩,(୨) =
Sୟ,୩,(୨) ∗ γ୩,(୨)

ω(୨)
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G୶,(ଵ) =

2m
sଶ ∗ ൬−3,514kg

ଵ
ଶ൰

166,4/s²
= −0,042m. kgଵ/ଶ 

 
(j) 

Units 
Gx 

(m*kg1/2) 
Gy 

(m*kg1/2) 
Gz 

(m*kg1/2) 
G 

(m*kg1/2) 
1 -0,042 0,673 0,122 0,752 
2 0,178 -0,034 0,050 0,194 

 
Calculation of the lateral forces: 

F୧,୩,(୨) = m୧,୩,(୨) ∗ ü୧,୩,(୨) = m୧,୩,(୨) ∗ G(୨) ∗ ϕ୧,୩,(୨) ∗ ω(୨)
ଶ  

 

Fଵ,୶,(ଵ) =
646,9kg ∗ 0,75m. kg

ଵ
ଶ ∗ (−12,67mm) ∗ 166/s²

10000
= −102,6N 

 
Mode 1 

Node F_x(1) 
(N) 

F_y(1) 
(N) 

F_z(1) 
(N) 

N2 -102,6 1227,3 3,4 
N4 -63,0 1227,3 -2,9 
N5 -124,7 1541,8 1271,1 
N7 -149,6 3010,0 0,2 

Total -439,9 7006,3 1271,8 
 
Mode 2 

Node F_x(2) 
(N) 

F_y(2) 
(N) 

F_z(2) 
(N) 

N2 379,1 -558,3 -0,3 
N4 12,2 -558,3 0,6 
N5 461,4 321,6 245,8 
N7 29,0 627,8 -0,1 

Total 881,7 -167,1 246,1 
 
Calculation of the shear force in base: 

F୩,(୨) = ෍ F୧,୩,(୨)l

୧

 

 
(j) 

units 
F_x 
(kN) 

F_y 
(kN) 

F_z 
(kN) 

1 -0,4399 7,0063 1,2718 
2 0,8817 -0,1671 0,2461 
R 6,4036 0,9457 6,9681 

Total 6,5 7,1 7,1 
 
The overturning moment in each node is calculated as follows: 

M୧,୩,(୨) = F୧,୩,(୨) ∗ z୧ 
 
The height zi is equal to the height of the concerning node minus the overturning height. In this case, the overturning 
height is equal to zero. 
 
Mode 1 

Node M_x(1) 
(N.m) 

M_y(1) 
(N.m) 

N2 -6136,4 513,1 
N4 -6136,4 315,1 
N5 -7709,0 623,6 
N7 -15049,9 747,9 
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Mode 2 

Node M_x(2) 
(N.m) 

M_y(2) 
(N.m) 

N2 2791,4 -1895,4 
N4 2791,4 -60,8 
N5 -1608,1 -2307,1 
N7 -3139,2 -145,2 

 
In this case, an extra overturning moment is calculated for the residual load case: 

M୒ଶ,୷,(ଵ) = 0,94kN ∗ (5m − 0m) = −4,7kN. m 
 
Mode R 

Node M_x(R) 
(kN.m) 

M_y(R) 
(kN.m) 

N2 0 -4,7 
N4 0 -6,4 
N5 0 -5,7 
N7 0 -15,2 

 
The letter R stands for the residual mode.  
 
For each mode the sum of the overturning moments are taken, afterwards the results are combined with the SRSS 
method: 
 

(j) 
units 

M_x 
(kN) 

M_y 
(kN) 

1 -35,0317 2,1997 
2 0,8355 -4,4085 
R 0,0000 -32,0180 

Total 35,0 32,4 
 
 
Calculation of the modal displacement: 

u୧,୩,(୨) = G(୨) ∗ ϕ୩,(୨) 
 
Mode 1 

Node ux 
(mm) 

uy 
(mm) 

uz 
(mm) 

N2 -0,95 11,40 0,03 
N4 -0,59 11,40 -0,03 
N5 -0,95 11,77 9,70 
N7 -0,58 11,77 0,00 
 

Mode 2 
Node ux 

(mm) 
uy 

(mm) 
uz 

(mm) 
N2 2,60 -3,82 0,00 
N4 0,08 -3,82 0,00 
N5 2,59 1,81 1,38 
N7 0,08 1,81 0,00 
 

To calculate the deformations for mode R, the load cases - generated out of the missing masses - are inputted as real 
load cases on the nodes of the structure. This gives the following table: 
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2. Deformation of nodes

Ux Uy Uz
[mm] [mm] [mm]

N1 LC3 0 0 0
N2 LC3 4,14 4,91 0,03
N3 LC3 0 0 0
N4 LC3 1,46 4,91 0
N5 LC3 4,14 8,25 6,74
N6 LC3 0 0 0
N7 LC3 1,45 8,25 0

Linear calculation, Extreme : Node
Selection : All
Load cases : LC3
Node Case

 
 
 
The deformations for each mode (namely mode 1, mode 2 and mode R) are combined with the SRSS-formula: 
 
Total 

Node ux 
(mm) 

uy 
(mm) 

uz 
(mm) 

N2 4,98 12,99 0,04 
N4 1,58 12,99 0,03 
N5 4,98 14,48 11,89 
N7 1,57 14,48 0,00 

 
 
The same for the modal acceleration: 

ü୧,୩,(୨) = ω(୨)
ଶ ∗ G(୨) ∗ ϕ୩,(୨) 

 
Mode 1 

Node ax 
(mm/s²) 

ay 
(mm/s²) 

az 
(mm/s²) 

N2 -158,6 1897,2 5,3 
N4 -97,4 1897,2 -4,5 
N5 -158,4 1957,8 1614,2 
N7 -97,3 1957,7 0,1 

 
Mode 2 

Node ax 
(mm/s²) 

ay 
(mm/s²) 

az 
(mm/s²) 

N2 586,0 -863,0 -0,4 
N4 18,8 -863,0 1,0 
N5 585,9 408,4 312,1 
N7 18,9 408,4 0,0 

 
For the mode R, the constant value of 2000mm/s² is used: 
 
Mode R 

Node ax 
(mm/s²) 

ay 
(mm/s²) 

az 
(mm/s²) 

N2 2000,0 2000,0 2000,0 
N4 2000,0 2000,0 2000,0 
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N5 2000,0 2000,0 2000,0 
N7 2000,0 2000,0 2000,0 

 
This gives through the SRSS-method: 
 
Total 

Node ax 
(mm/s²) 

ay 
(mm/s²) 

az 
(mm/s²) 

N2 2090,1 2888,7 2000,0 
N4 2002,5 2888,7 2000,0 
N5 2090,1 2828,4 2589,0 
N7 2002,5 2828,3 2000,0 

 
 
In the same way as for the ‘missing mass method’ the calculated deformations are put on the structure as real load cases. 
This gives the following internal forces: 
 
Mode 1: 

dx N Vy Vz Mx My Mz
[m] [kN] [kN] [kN] [kNm] [kNm] [kNm]

B1 LC3 0 4,38 -1,35 0,36 0,01 -0,49 3,44
B1 LC3 5 4,38 -1,35 0,36 0,01 1,29 -3,3
B2 LC3 0 -3,73 -1,35 -0,04 0,01 0,12 3,44
B2 LC3 5 -3,73 -1,35 -0,04 0,01 -0,06 -3,3
B3 LC3 0 0,62 -4,32 -0,78 0,28 6,54 18,85
B3 LC3 5 0,62 -4,32 -0,78 0,28 2,65 -2,73
B4 LC3 0 0 0,35 0,08 -4,43 -1,48 -0,4
B4 LC3 3 0 0,35 0,08 -4,43 -1,24 0,63
B5 LC3 0 0 -0,12 -1,19 1,48 2,69 0,35
B5 LC3 6 0 -0,12 -1,19 1,48 -4,43 -0,4
B6 LC3 0 0 -0,12 0,54 1,49 -1,46 0,33
B6 LC3 6 0 -0,12 0,54 1,49 1,78 -0,36
B7 LC3 0 0 0,23 -3,19 -1,4 4,78 -0,35

B7 LC3 3 0 0,23 -3,19 -1,4 -4,8 0,34

Linear calculation, Extreme : Member, System : Principal
Selection : All
Load cases : LC3
Member Case

 
 
Mode 2: 

dx N Vy Vz Mx My Mz
[m] [kN] [kN] [kN] [kNm] [kNm] [kNm]

B1 LC4 0 -0,27 0,46 0,36 -0,15 -0,88 -1,17
B1 LC4 5 -0,27 0,46 0,36 -0,15 0,94 1,15
B2 LC4 0 0,59 0,46 0,01 -0,16 -0,03 -1,17
B2 LC4 5 0,59 0,46 0,01 -0,16 0,04 1,15
B3 LC4 0 -0,08 -0,77 0,49 -2,26 -1,52 3,07
B3 LC4 5 -0,08 -0,77 0,49 -2,26 0,94 -0,76
B4 LC4 0 0 -0,55 -0,08 -0,91 -0,25 -0,12
B4 LC4 3 0 -0,55 -0,08 -0,91 -0,5 -1,78
B5 LC4 0 0 -0,05 -0,33 0,25 1,04 0,2
B5 LC4 6 0 -0,05 -0,33 0,25 -0,91 -0,12
B6 LC4 0 0 -0,13 0,01 0,26 -0,06 0,31
B6 LC4 6 0 -0,13 0,01 0,26 -0,03 -0,48
B7 LC4 0 0 0,06 0,6 -0,1 -0,9 -0,05
B7 LC4 3 0 0,06 0,6 -0,1 0,89 0,14

Linear calculation, Extreme : Member, System : Principal
Selection : All

Load cases : LC4
Member Case
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Mode R: 

dx N Vy Vz Mx My Mz
[m] [kN] [kN] [kN] [kNm] [kNm] [kNm]

B1 LC3 0 4,232 -0,575 0,824 -0,134 -1,804 1,47
B1 LC3 5 4,232 -0,575 0,824 -0,134 2,314 -1,402
B2 LC3 0 -0,061 -0,574 0,244 -0,144 -0,559 1,47
B2 LC3 5 -0,061 -0,574 0,244 -0,144 0,661 -1,401
B3 LC3 0 2,798 -3,078 5,79 -2,301 -22,431 13,299
B3 LC3 5 2,798 -3,078 5,79 -2,301 6,521 -2,093
B4 LC3 0 -1,406 -1,192 0,005 -4,714 -1,048 0,818
B4 LC3 3 -1,406 -1,192 0,005 -4,714 -1,033 -2,759
B5 LC3 0 0,159 0,242 -1,301 1,048 3,092 -0,632
B5 LC3 6 0,159 0,242 -1,301 1,048 -4,714 0,818
B6 LC3 0 -1,527 0,164 -0,282 1,061 -0,117 -0,525
B6 LC3 6 -1,527 0,164 -0,282 1,061 -1,807 0,457
B7 LC3 0 0,039 -0,478 -1,637 -0,778 2,45 0,766
B7 LC3 3 0,039 -0,478 -1,637 -0,778 -2,461 -0,669

Linear calculation, Extreme : No, System : Principal
Selection : All

Load cases : LC3
Member Case

 
 
Combination via SRSS method gives: 
 

dx N Vy Vz Mx My Mz
[m] [kN] [kN] [kN] [kNm] [kNm] [kNm]

B1 LC2 0,00 6,10 1,54 0,97 0,20 2,07 3,92
B1 LC2 5,00 6,10 1,54 0,97 0,20 2,81 3,77
B2 LC2 0,00 3,78 1,54 0,25 0,22 0,57 3,92
B2 LC2 5,00 3,78 1,54 0,25 0,22 0,66 3,77
B3 LC2 0,00 2,87 5,36 5,86 3,24 23,41 23,27
B3 LC2 5,00 2,87 5,36 5,86 3,24 7,10 3,52
B4 LC2 0,00 1,41 1,36 0,11 6,53 1,83 0,92
B4 LC2 3,00 1,41 1,36 0,11 6,53 1,69 3,34
B5 LC2 0,00 0,16 0,27 1,79 1,83 4,23 0,75
B5 LC2 6,00 0,16 0,27 1,79 1,83 6,53 0,92
B6 LC2 0,00 1,53 0,24 0,61 1,85 1,47 0,69
B6 LC2 6,00 1,53 0,24 0,61 1,85 2,54 0,75
B7 LC2 0,00 0,04 0,53 3,64 1,60 5,45 0,84
B7 LC2 3,00 0,04 0,53 3,64 1,60 5,47 0,76

Member Case

 
 
 
The reactions are: 
 
Mode 1 

Rx Ry Rz Mx My Mz
[kN] [kN] [kN] [kNm] [kNm] [kNm]

Sn1/N1 LC3 -0,36 -1,35 -4,38 3,44 -0,49 0,01
Sn2/N6 LC3 0,78 -4,32 -0,62 18,85 6,54 0,28
Sn3/N3 LC3 0,04 -1,35 3,73 3,44 0,12 0,01

Load cases : LC3
Support Case

Linear calculation, Extreme : Node
Selection : All

 
 
Mode 2: 

Rx Ry Rz Mx My Mz
[kN] [kN] [kN] [kNm] [kNm] [kNm]

Sn1/N1 LC4 -0,36 0,46 0,27 -1,17 -0,88 -0,15
Sn2/N6 LC4 -0,49 -0,77 0,08 3,07 -1,52 -2,26
Sn3/N3 LC4 -0,01 0,46 -0,59 -1,17 -0,03 -0,16

Selection : All
Load cases : LC4

Support Case

Linear calculation, Extreme : Node
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Mode R: 

Rx Ry Rz Mx My Mz
[kN] [kN] [kN] [kNm] [kNm] [kNm]

Sn1/N1 LC3 -0,82 -0,575 -4,232 1,47 -1,804 -0,134
Sn2/N6 LC3 -5,79 -3,078 -2,798 13,299 -22,431 -2,301
Sn3/N3 LC3 -0,24 -0,574 0,061 1,47 -0,559 -0,144

Linear calculation, Extreme : Node
Selection : All

Load cases : LC3
Support Case

 
 
SRSS: 

Rx Ry Rz Mx My Mz
[kN] [kN] [kN] [kNm] [kNm] [kNm]

Sn1/N1 LC2 0,97 1,54 6,10 3,92 2,07 0,20
Sn2/N6 LC2 5,86 5,36 2,87 23,27 23,41 3,24
Sn3/N3 LC2 0,25 1,54 3,78 3,92 0,57 0,22

Support Case

 
 
NB: 
------------------------------------------------------------------------------------------------------------------------------------------------------------- 
In case of CQC, we don’t assume any correlation with the other modes (i.e. absolute value is added)  
The cut-off frequency is the frequency of the latest modes in the analysis. It is the responsibility of the user to select the 
correct number of modes. This can be done in the Solver Setup. 
------------------------------------------------------------------------------------------------------------------------------------------------------------- 
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CHAPTER 12 : DAMPING 
 
 
 
In the previous chapters, the influence of damping on the dynamic response of a structure was shown. Especially in the 
vicinity of resonance the effect of damping was significant.  
In this chapter, damping will be looked upon in more detail. First the theory will be explained after which the input of 
non-uniform damping in SCIA Engineer is regarded.  
By means of the examples of the previous chapter, the influence of damping on the seismic response is illustrated. The 
chapter is finished with a 3D structure, which takes into account material damping of the different elements. 
 
 
 

12.1 Theory 
 
 
Damping can have different causes. The component that is always present is structural damping. Structural damping is 
caused by hysteresis in the material: the transfer of small amounts of energy into warmth for each vibration cycle possibly 
increased by friction between internal parts.  
Other causes can be the foundation soil of the building and aerodynamic damping due to the diversion of energy by the 
air [22]. In many cases, damping is increased by adding artificial dampers to the structure.  
 
In the same way as for the previous chapters, first the theory is examined. A complete overview can be found in reference 
[1].  
 
Consider the following damped free-vibrating system: 
 

 
 
A body mass m can move in one direction. A spring of constant stiffness k, which is fixed at one end, is attached at the 
other end to the body. The mass is also subjected to damping with a damping capacity c. 
 
The equation of motion, using matrix notations can be written as: 

M. ẍ(t) + C. ẋ(t) + K. x(t) = 0 
(5.1) 
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A possible solution to this equation is one of the type: 
x = A. eୱ୲ 

(5.2) 
 
Substituting (5.2) in (5.1) gives: 

M. sଶ. A. eୱ୲ + C. s. A. eୱ୲ + K. A. eୱ୲ = 0 
(5.3) 

 
This equation can be rewritten as: 

sଶ + 2. n. s + ω୬
ଶ = 0 

(5.4) 
With: 

n =
C

2M
 

(5.5) 

ω୬ = ඨ
K

M
 

(5.6) 
 
The possible solutions for equation (5.4) are: 

s = −n ± ඥnଶ − ω୬
ଶ  

(5.7) 
 
It is clear that the response of the system depends on the numerical value of the radical. Therefore the following three 
possibilities need to be examined: 

n = ω୬ 
 

n < ω୬ 
 

n > ω୬ 
(5.8) 

 
These can be rewritten as: 

C = 2. √K. M 
 

C < 2. √K. M 
 

C > 2. √K. M 
(5.9) 

 
The condition C = 2. √K. M = Cୡ is called critical damping. In this case, the displaced body is restored to equilibrium in 
the shortest possible time, without oscillation. 
 
The ratio 𝜉 is called the damping ratio or the relative damping: 
 

ξ =
C

Cୡ

 

 
Therefore, when assuming n = ξ. ω୬, equation (5.5) can be written as: 
 

C = 2. ξ. ω୬. M 
(5.10) 
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The three possibilities of equation (5.8) can be rewritten as: 
 

𝜉 = 1 
 

𝜉 < 1 
 

𝜉 > 1 
(5.11) 

 
When looking at the conditions 𝜉 = 1 and 𝜉 > 1, it can be shown that there is no harmonic solution. 
Only the condition 𝜉 < 1 gives a harmonic solution. 

 
Introducing the damped circular frequency: 

ωୈ = ω୬. ඥ1 − ξଶ 
 
the solution to equation (5.1) can be written as: 

x = eିஞன౤୲. {A. cos(ωୈt) + B. sin(ωୈt)} 
(5.12) 

 
In a previous chapter, this vibration equation was illustrated by the following figure: 
 

 
 
A convenient way to determine the damping in a system was shown to be the logarithmic decrement 𝚲, which is the 
natural logarithm of the ratio of any two successive amplitudes in the same direction. 

 

Λ = ln
Xଵ

Xଵଵ

=
2πξ

ඥ1 − ξଶ
 

(5.13) 
 
 

NB: 
As shown above, the circular frequency is reduced by the damping action to obtain the damped circular frequency. 
However, in many systems this reduction is likely to be small because very small values of  are common; for example, in 
most engineering structures  is rarely greater than 0,02. Even if  = 0,2; D = 0,98n. 
 
Annex B gives some references for numerical values of the damping ratio. 
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12.2 Damping in SCIA Engineer 
 
 
In SCIA Engineer, damping can be specified on 1D elements, 2D elements and supports. The damping of each of these 
elements (or substructures) will be used to calculate a modal damping ratio for the whole structure for each Eigenmode. 
In the literature this is described as Composite Damping.  
 
Composite damping is used in partly bolted, partly welded steel constructions, mixed steel-concrete structures, 
constructions on subsoil, ...  
For structural systems that consist of substructures with different damping properties, the composite damping matrix C 
can be obtained by an appropriate superposition of damping matrices for the individual substructures Ci: 

C = ෍ C୧

୒

୧ୀଵ

 

(5.14) 
With: 

C୧: the damping matrix for the ith substructure in the global coordinate system. 
N: the number of substructures being assembled. 

 
 
 Proportional Damping (Rayleigh Damping)  
 

A way of describing the damping is assuming that the damping matrix is formed by a linear combination of the mass and 
stiffness matrices. 

C୧ = α୧. M୧ + β୧. K୧ 
(5.15) 

With: 
 α୧ and β୧: proportional damping for the ith part of the structure. 
 Mi: mass matrix for the ith part of the structure in the global coordinate system. 

Ki: stiffness matrix for the ith part of the structure in the global coordinate system. 
 
Formulas for these proportional damping coefficients can be found in reference [19].  
Examples can be found in reference [20]. 

 
 
 Stiffness-Weighted Damping 
 

For structures or structural systems that consist of major substructures or components with different damping 
characteristics, composite modal damping values can be calculated using the elastic energy of the structure [8], [21]: 
 

ξ୨ =
∑ ξ୨. E୧

୒
୧ୀଵ

E
 

(5.16) 
With: 

ξ୨: damping ratio of the considered eigenmode. 
E: elastic energy of the structure, associated with the modal displacement of the considered eigenmode. 
N: number of all substructures. 
ξ୧: damping ratio for the ième substructure. 
Ei: elastic energy for the ième substructure, associated with the modal displacement of the considered eigenmode. 

 
Equation (5.16) can be rewritten in the following way [19]: 

ξ୨ =
Φ୨

୘. ൣ∑ [ξK]୧
୒
୧ୀଵ ൧. Φ୨

ω୨
ଶ  

(5.17) 
 
With: 
[ξK]i: stiffness matrix for the ith substructure in the global coordinate system, scaled by the modal damping ratio of the ith 

substructure. 
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NB: 
This formula may be used as long as the resulting damping values are less than 20% of critical. If values in excess of 20% 
are computed, further justification is required. 
 
As specified, in SCIA Engineer on each element a damping ratio can be inputted. For this ratio, also the damping of the 
material can be used from which the element is manufactured. 
 
When no damping ratio is inputted on an element, a default value will be used since all elements need a damping ratio 
before the above formulas can be applied. The input of this default will be shown in the examples.  
Analogous to the input of other objects in SCIA Engineer, Damping on elements will be grouped in a Damping Group. In 
turn, this Group can be assigned to a Combination of Mass Groups. 
 
 

 Support damping 
 
Additional to the damping of 1D and 2D elements, SCIA Engineer allows the input of a damper on a flexible nodal support. 
The modal damping ratio ξ୨ is calculated by the following formula: 

 

ξ୨ = α.
Φୱ,୨

୘ . [∑ Cୱୱ ]. Φୱ,୨

4. ω୨

 

(5.18) 
With: 

ω୨: the circular frequency of mode j 
 Φୱ,୨: the modal displacement in support node s for mode j 
 Cୱ: the damping constant for the support 
 α: a user defined parameter (> 0) 

 
The total modal damping ratio can then be calculated as the summation of equations (5.17) and (5.18).  
 
As specified, on all 1D and 2D elements a damping ratio has to be defined. This is not the case with supports, not every 
support needs to have a damping value. 
 
The following diagram shows how non-proportional damping is inputted in SCIA Engineer: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Activate the functionalities: 
- “Dynamics” 

- « Non-proportional damping » 

Create a damping group 

Proceed with the steps of the previous chapters. 
 

Assign the damping group to a mass combination 

Input dampers 



Advanced Training - Dynamics 

172 

 
The use of dampers and the calculation of the composite damping ratio will be illustrated in the following examples. 
 
NB: The damping functionality is only available on 32-bit version of SCIA Engineer . 
 
 
------------------------------------------------------------------------------------------------------------------------------------------------ 
Example 11-1.esa 
 
In this example, the principle of stiffness-weighted damping is illustrated.  
 
A concrete frame is modelled in which the beam is assumed to be rigid. In this case, only the columns take part in the 
horizontal stiffness of the frame.  
 
The left column has a Rectangular 500 x 500 section, the right column a Rectangular 350 x 350 section. The column bases 
are modelled as rigid. To model the rigid beam, a Rectangular 500000 x 500000 section is used. To make sure this beam 
acts as rigid, in the nodes between the columns and the beam, supports are inputted which have a fixed Translation Z 
and Rotation Ry. The height of the columns and the length of the beam are taken as 5m. All elements are manufactured 
in C30/37 according to EC-EN. 
 

 
 
 
The beam is loaded by a line mass of 500 kg/m. The left column has a damping ratio of 12%, the right column a damping 
ratio of 3%.  
 
One static load case is created: the self-weight of the beam. However, in order not to take the self-weight into account 
for the dynamic calculation, the volumetric mass of C30/37 can be set to 1e-10 kg/m³ in the Material Library. This low 
value is chosen to avoid any influence by the rigid beam.  
 
The steps of the Free Vibration calculation are followed and extended with the input of damping. 
 
Step 1: functionality 
 
The first step in the Dynamic calculation is to activate the functionalities Dynamics and Non-Proportional Damping on the 
Functionality tab in the Project Data. 
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Step 2: mass group and masses 
 
A Mass Group is created after which the line mass of 500 kg/m can be inputted on the rigid beam. 
 

 
 
 
Step 3: damping 
 
Before creating a Combination of Mass Groups, the dampers are inputted. 
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First of all, a Damping Group is created. 
 

 
 
As specified in the theory, on each element a damping ratio needs to be inputted. When no damper is specified, a default 
value will be taken. In the properties of the Damping Group, this default can be set as either: 
 

-   « Global default »: the logarithmic decrement specified in the Damper Setup will be used. 
-   « Material default » : the logarithmic decrement of the material will be used. 

 
In this example, the Global default is chosen.  
 

After the creation of a Damping Group, Dampers can be inputted. In this example, 1D Damping shall be inputted 
on the columns. The damping can be inputted in the following ways, which have been explained in the theory: 

 
 
 
On the left column, a Relative damping of 0,12 is inputted. 
On the right column, a Relative damping of 0,03 is inputted. 
 

 
 

As a final step, the general parameters can be checked through Damper Setup: 
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The Base value specifies the default value when a Damping Group of type Global default is chosen and no damper is 
inputted on an element.  
The Alpha factor is used in the damping calculation for supports as specified in the theory.  
When the composite modal damping ratio is calculated, the value is checked with the Maximal modal damping value 
inputted here. If the calculated value is higher than the maximal value, the maximal value is used. In this example, the 
maximal value is set to 0,2 in accordance with the remark for formula (5.17) 
 
 
Step 4: mass matrix 
 
A Combination of Mass Groups can now be created and the Damping Group can be specified: 
 

 
 
 
Step 5: mesh setup 
 
To obtain precise results for the dynamic calculation, the Finite Element Mesh is refined.  
This can be done through the main menu Tools / Calculation & Mesh / Mesh settings: 
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The Average number of tiles of 1D element is set to 10. 
 
 
Step 6: solver setup 
 
The last step before launching the calculation is setting the amount of eigenmodes to be calculated. For this example, 
only one eigenmode is required so in the main menu Tools / Calculation & Mesh / Solver Settings, the number of 
frequencies is set to 1.  
 
To compare the results with a manual calculation, the shear force deformation is neglected. 
 

 
 
 
Step 7: linear calculation and calculation protocol 
 
All steps have been executed so the Free Vibration calculation can be started through the main menu Tools / Calculation 
& Mesh / Calculate.  
 
The following results are obtained through the Calculation Protocol for the Eigen Frequency calculation: 
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The calculated modal damping ratio is shown to be 0,1026 or 10,26%. 
 
 
Step 8: manual calculation 
 
In order to check the results of SCIA Engineer, a manual calculation is performed.  
First, the calculated eigen frequency is checked using formula (2.3)  
In this example, the two columns can be treated as fixed-fixed beams. Using default engineering tables [12], each column 
contributes the following stiffness to the frame: 

k =
12. EI

Lଷ
 

(5.19) 
 
With for column 1: 
   E = 32000N/mm² 
   I = 5208300000mm4 
   L = 5000mm 
And for column 2: 

E = 32000N/mm² 
   I = 1250500000mm4 
   L = 5000mm 
 
So: 

kଵ =
12 ∗

32000N
mmଶ ∗ 5208300000mmସ

(5000mm)ଷ
= 15999,8976N/mm 

 

kଶ =
12 ∗

32000N
mmଶ ∗ 1250500000mmସ

(5000mm)ଷ
= 3841,536N/mm 

 
Both columns act in parallel since each column will displace the same amount due to the fact the beam is rigid. The beam 
itself does not bend so it does not contribute to the stiffness. 
 

k୲୭୲ = kଵ + kଶ =
15999,8976N

mm
+

3841,536N

mm
=

19841,4336N

mm
 

 
The vibrating mass is calculated as: 

500kg

m
∗ 5m = 2500kg 

 

ω = ඨ
k

m
= ඨ

19841433,6N/m

2500kg
= 89,087rad/s 

 

f =
ω

2π
= 14,1787Hz 

 
These results correspond exactly to the results obtained by SCIA Engineer. 
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Next, the stiffness-weighted damping ratio is calculated. The first column has a damping ratio of 12%, the second column 
a damping ratio of 3%.  
Using the elastic energy principle of formula (5.16) the modal damping ratio can be calculated as follows: 
 

ξ =
ξଵ. kଵ + ξଶ. kଶ

k୲୭୲

 

 

ξ =
(0,12 ∗ 15999,8976N/mm) + (0,03 ∗ 3841,536N/mm)

19841,4336N/mm
 

 
ξ = 0,1026 = 10,26% 

 
This result corresponds exactly to the result obtained by SCIA Engineer.  
The modal damping ratio can now be used to calculate the Damping Coefficient in a seismic calculation. This will be 
illustrated in the following examples.  
------------------------------------------------------------------------------------------------------------------------------------------------------------- 
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------------------------------------------------------------------------------------------------------------------------------------------------------------- 
Example 11-2.esa 
 
In this example, non-proportional damping is accounted for in a seismic calculation using the SRSS modal combination 
method. To this end, the example (04-2)  from the previous chapter is extended with dampers. 
More specifically, a relative damping of 12%, 3% and 8% is inputted on the three columns starting from the base of the 
structure. 
 
 
Step 1: functionality 
 
The first step to take into account the damping is to activate the functionality Non-Proportional Damping on the 
Functionality tab in the Project Data. 
 
 
Step 2: damping group 
 
The second step is the creation of a Damping Group. 

 
 
Since a damper will be inputted on all elements, the choice of the default damping type is not relevant. 
 
 
Step 3: dampers 
 
After the creation of a Damping Group, Dampers can be inputted. A relative damping of 12%, 3% and 8% is inputted on 
the three columns starting from the base of the structure: 
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Step 4: mass matrix 
 
As a final step, the Damping Group is assigned to the Mass Combination: 
 

 
 
 
Step 5: linear calculation and calculation protocol 
 
The non-proportional damping has now been inputted so the Linear Calculation can be re-done to see the Seismic results.  
 
The following results are obtained through the Calculation protocol of the Linear Calculation: 
 

 
 
For both eigenmodes the Composite Modal Damping Ratio is calculated using equation (5.17). 
 
As specified in the previous chapter, this Damping Ratio will be used to calculate the Damping Coefficient, which 
influences the spectral accelerations. Using equation (4.13): 
 

ηଵ = ඨ
10

(5 + 9,96)
= 0,8176 

 

ηଶ = ඨ
10

(5 + 7,11)
= 0,9087 

 
As expected, since the modal damping ratios are higher than the default 5% used in the acceleration spectrum, they will 
have a positive effect thus lowering the response of the structure.  
 
More specifically, for the first eigenmode only 81,7% of the spectral acceleration will be taken into account and for the 
second eigenmode 90,8%.  
 
The spectral accelerations of the original example without damping can thus be multiplied by  : 
 

Sax,(1) = 0,2019 m/s² * 0,8176 = 0,1651 m/s² 
Sax,(2) = 0,4380 m/s² * 0,9087 = 0,3980 m/s² 

 
These adapted spectral accelerations will thus influence the mode coefficients, the base shear, the overturning moment, 
the nodal displacements and accelerations,… 
------------------------------------------------------------------------------------------------------------------------------------------------------------- 
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------------------------------------------------------------------------------------------------------------------------------------------------------------- 
Example 11-3.esa: 
 
In this example, non-proportional damping is accounted for in a seismic calculation using the CQC modal combination 
method. To this end, the example Spectral_Analysis_3.esa from the previous chapter is extended with dampers.  
More specifically, a relative damping of 2%, 5% and 2% is inputted on the three columns starting from the base of the 
structure. 
 
As seen in the theory and the original example, the CQC method required the definition of a Damping Spectrum. This 
damping spectrum was used for the calculation of the Modal Cross Correlation Coefficients and to calculate the Damping 
Coefficient for each mode.  
 
When however Non-Proportional Damping is used, the calculated Composite Modal Damping Ratios are used instead of 
the data of the Damping Spectrum. This is illustrated in this example. 
 
 
Step 1: functionality 
 
The first step to take into account the damping is to activate the functionality Non-Proportional Damping on the 
Functionality tab in the Project Data. 
 
 
Step 2: damping group 
 
The second step is the creation of a Damping Group: 
 

 
 
Since a damper will be inputted on all elements, the choice of the default damping type is not relevant. 
 
 
Step 3: dampers 
 
After the creation of a Damping Group, Dampers can be inputted. A relative 
damping of 2%, 5% and 2% is inputted on the three columns starting from the 
base of the structure: 
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Step 4: mass matrix 
 
As a final step, the Damping Group is assigned to the Mass Combination: 
 

 
 
 
Step 5: linear calculation and calculation protocol 
 
The non-proportional damping has now been inputted so the Linear Calculation can be re-done to see the Seismic results.  
 
The following results are obtained through the Calculation protocol of the Linear Calculation: 
 

 
 
In the original example, a Damping Spectrum with a constant damping ratio of 2% was used. Due to the inputted dampers, 
the calculated Composite Modal Damping Ratios of 2,64% and 3,30% are now used.  

 
Using equation (4.13) the Damping Coefficients can be calculated: 
 

ηଵ = ඨ
10

(5 + 2,65)
= 1,1432 

 

ηଶ = ඨ
10

(5 + 3,30)
= 1,0976 

 
As was the case in the original example, the damping ratios are lower than the default 5% used in the acceleration 
spectrum, they will have a negative effect thus augmenting the response of the structure.  
 
Since the calculated damping ratios are higher than the original 2%, the response will be less when compared to the 
original example.  
 
Second, the calculated Composite Modal Damping Ratios will be used for the calculation of the Modal Cross Correlation 
Coefficients of the CQC-method.  
 
This will be illustrated in a manual calculation. 
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Step 6: manual calculation 
 
In this paragraph, the application of the CQC-method using the calculated Composite Modal Damping Ratios is illustrated 
for the global response of the Base Shear. 
 
Mode 1: 

ω(ଵ) = 3,3007rad/s 
F(ଵ) = 0,2701kN 

 
Mode 2: 

ω(ଶ) = 21,5192rad/s 
F(ଶ) = 0,1629kN 

 
Using a spreadsheet, the Modal Cross Correlation Coefficients 𝛒𝐢,𝐣 are calculated with a damping ratio 𝛏𝐢,𝐣 of 2,64% for the 
first eigenmode and 3,30% for the second eigenmode. 
 

Mode 1 2 

1 1 0,00055202 
2 0,00055202 1 

 

R୲୭୲ = ඩ෍ ෍ R(୧). ρ୧,୨. R(୨)

୒

୨ୀଵ

୒

୧ୀଵ

 

 

R୲୭୲ = ඨ
(0,2701kN ∗ 1 ∗ 0,2701kN) + (0,2701kN ∗ 0,00055202 ∗ 0,1629kN)

+(0,1629kN ∗ 0,00055202 ∗ 0,2701kN) + (0,1629kN ∗ 1 ∗ 0,1875kN)
 

 
R୲୭୲ = 0,315kN 

 
 
The difference between these Correlation Coefficients and the original is very small which was to be expected since the 
calculated damping ratios are close to the original 2%.  
------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 

  



Advanced Training - Dynamics 

184 

------------------------------------------------------------------------------------------------------------------------------------------------------------- 
Example 11-4.esa 
 
In this example, a seismic analysis is carried out on a storage depot. The layout of the structure is given in the pictures 
below. The depot is constructed with steel members manufactured of S235 according to EC-EN. On the upper roof, a 
steel shell is used with thickness 20 mm.  
On each floor level, concrete slabs are used with thickness 200 mm. The slabs are manufactured in C25/30 according to 
EC-EN. 
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The diagonals are hinged in both directions. The column bases are also hinged though the anchors are spaced such that 
the rotation around the Z-axis is taken as fixed.  

 
The steel members of the depot have following cross-sections: 

- Columns: IPE300 
- Floor beams: HE200A 
- Roof beams: IPE160 
- Diagonals: L(ARC) 40x40x4 

 
The vertical loads acting on the structure are: 

- Load case 1: the self-weight of the depot 
- Load case 2: a category E (storage) imposed load of 5 kN/m² on all floor slabs. 

 
The structure will be subjected to an earthquake loading in both X, Y and Z direction, using a Design Response Spectrum 
according to Eurocode 8 for Ground Type A with a behaviour factor of 1,5. This means that the spectrum for the internal 
forces will be divided by this value. The acceleration coefficient is 0,50.  
For the dynamic calculation, the structural damping of the depot is taken into account. More specifically, a logarithmic 
decrement of 0,025 is used for steel and 0,056 for concrete [22]. 
 
 
Step 1: functionality 
 
The first step to take into account the damping is to activate the functionality Non-Proportional Damping on the 
Functionality tab in the Project Data. 
 
 
Step 2: mass group and masses 
 
The second step is to create Mass Groups and then the creation of Masses.  
Since the self-weight is automatically taken into account in a Combination of Mass Groups, only one Mass Group is 
created here, a group to take the mass of the imposed load into account. 
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Using the action “Create masses from load case” automatically generates masses from the already inputted loads. 
 

 
 
 
Step 3: damping groups 
 
Before creating a Combination of Mass Groups, the damping is specified.  
First of all, a Damping Group is created. 
 

 
 
Since, in this example, the structural damping of the steel and concrete is taken into account, the Type of default damping 
is set to Material default. This way, when no damper is inputted on an element, the default damping value of the material 
will be used. 
The damping values can be specified in the Material Library: 
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For the concrete, a logarithmic decrement of 0,056 is inputted, for the steel a value of 0,025. 
 
 
Step 4: mass matrix 
 
The Mass Group and Damping Group can now be combined in a Combination of Mass Groups.  
 
As specified in formula (2.9) all gravity loads appearing in the following combination of actions need to be taken into 
account for an eigenmode calculation: 

෍ G୩ + ෍ ψ୉,୧. Q୩,୧ 

 
For this example, with a Category E imposed load,  is taken as 1,0 and 2,i as 0,8. 
This gives a value of 0,8 for E,i 

 
Since the self-weight is automatically taken into account, the Combination of Mass Groups CM1 can be formulated as 
0,80 MG1: 
 

 
 
As a final step, the Damping Group is assigned to the Combination of Mass Groups. 
 
 
Step 5: seismic spectrum 
 
Before creating the seismic load cases, the seismic spectrum needs to be defined through the main menu Library / Seismic 
spectrums. 
Instead of inputting a spectrum manually, the spectrum according to EC8 is chosen. In this example, the spectrum for 
Ground Type A with a Behaviour Factor q = 1,5 is used for all directions: 
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Step 6: seismic load case 
 
The Seismic load cases can now be defined through the workstation “Load cases”, and “Load Cases”.  
For the Seismic load case in the X-direction, the following parameters are used: 
 

 
 

The Coefficient of Acceleration is set to 0,5. As Type of evaluation the CQC-method is used.  
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In exactly the same way, the Seismic load cases in the Y and Z-direction are defined: 
 

   
 
This steps have to be repeated for load cases that define the deformations (behaviour factor q is different). 
 
 
NB: 
For the load case Seismic Z a new spectrum has to be defined with type vertical. 
 
Three other EN-Seismic load cases have to be defined, the first 3 are for internal forces and 3 new (with q-behaviour factor 
set to 1) for deformation. Each group of load cases has to get a load group with type “seismic” & “together” and they must 
be placed in separate combinations. 
 
 
According to Eurocode 8 [7] the action effects due to the combination of the horizontal components of the seismic action 
may be computed using the following combinations: 
 

E୉ୢ୶"+"0,3. E୉ୢ୷" + "0,3. E୉ୢ୸ 
0,3. E୉ୢ୶"+"E୉ୢ୷" + "0,3. E୉ୢ୸ 
0,3. E୉ୢ୶"+"0,3. E୉ୢ୷" + "E୉ୢ୸ 

Where: 
 
« + » implies « to be combined with ». 
             
EEdx represents the action effects due to the application of the seismic action along the chosen horizontal axis x of the 
structure. 
 
EEdy represents the action effects due to the application of the seismic action along the chosen horizontal axis y of the 
structure. 
 
EEdz  represents the action effects due to the application of the seismic action along the chosen horizontal axis z of the 
structure. 
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First of all, this implies that all Load cases must always be considered together in a combination. In SCIA Engineer this can 
be done by putting both Seismic Load cases in a Load Group with relation Together. 
 

 
 
Next, the combination for the Seismic calculation can be inputted. According to Eurocode 8 [7] this combination is the 
following: 

෍ G୩ + P + A୉ୢ + ෍ ψଶ,୧. Q୩,୧ 

(5.22) 
 
Where Aed represents the accidental action, which is in this case the combined seismic action. 
 
In SCIA Engineer, the EN-seismic type can be used for this purpose. 
To fulfil the conditions of the Eurocode, 6 load combinations of this type are created: 
 

 
 
To be able to see the global extremum for the two combinations, two Results classes can be used: 
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Step 7: mesh setup 
 
To obtain precise results, the Finite Element Mesh is refined through the main menu Tools / Calculation & Mesh /  Mesh 
Settings. The Average number of tiles of 1D element is set to 10; the Average size of 2D element is set to 0,25m. 
 

 
 
 
Step 8: solver setup 
 
The last step before launching the calculation is setting the amount of eigenmodes to be calculated. For this example, 
five eigenmodes are chosen.  
In the main menu Tools / Calculation & Mesh /  Solver Settings, the number of frequencies is thus set to 5. 
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Step 9: linear calculation and calculation protocol 
 
All steps have been executed so the Linear Calculation can be started through the main menu Tools / Calculation & Mesh 
/ Calculate.  
 
The Calculation Protocol for the Eigen Frequency calculation shows the following: 
 

 
 
It can be seen that for both horizontal directions more than 90% of the total mass is taken into account in these five 
modes so it is concluded that sufficient Eigenmodes have been calculated.  
 
Through Deformation of nodes under 2D Members, the Deformed Mesh can be used to visualize the first four 
Eigenmodes: 
 

 
Eigenmode 1: f = 0,73Hz  Eigenmode 2: f = 1,82Hz 
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Eigenmode 3: f = 2,17Hz  Eigenmode 4: f = 2,20Hz 

 
 
The Calculation Protocol for the Linear calculation shows the results of the seismic calculation: 
 

 
 
For each Eigenmode the Composite Damping Ratio has been calculated using the structural damping of the steel and 
concrete.  
 
The combinations can now be used to verify the structural elements. 
------------------------------------------------------------------------------------------------------------------------------------------------------------- 
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CHAPTER 13 : DIRECT TIME INTEGRATION 
 
 
 

13.1 Theory 
 
 
The title may be misleading because normally in the literature, this name is used for a dynamic computation without 
modal superposition. In SCIA Engineer, the eigenmodes are determined first and are used to uncouple the equilibrium 
equations into a set of m uncoupled second order differential equations which are solved one by one by direct time 
integration. The uncoupling is based on the properties given by equations. 
 

Φ୨
୘. M. Φ୧ = 0           si i ≠ j 

 
Φ୨

୘. M. Φ୧ = 1           si i = j 
 

Φ୨
୘. M. Φ୧ = ω୧

ଶ 
 
In equation (3.1), a solution for y is assumed to be of the form: 

y = ϕ. Q 
(7.1) 

 
Where ϕ is the matrix of eigenvectors (n*n) and Q is a vector which is time dependant. 
 
Substitution in equation (3.1) gives: 

M. ϕ. Q̈ + C. ϕ. Q̇ + K. ϕ. Q = F 
(7.2) 

 
When the equation is pre-multiplied with ϕ୘ and the above equations are taken into account, one obtains: 

Q̈ + ϕ୘. C. ϕ. Q̇ + Ωଶ. Q = ϕ୘. F 
(7.3) 

 
This set of equations is still coupled because of the damping term. If however C-orthogonality is assumed (this means 
that ϕ୘. C. ϕ  reduces to only diagonal terms), then the equations are uncoupled and can be solved separately. 
The global results are obtained by superposition of the individual results (7.1) is also the exact solution if the assumption 
of C-orthogonality holds. If however, only a few eigenvectors (m<n) are used in ϕ instead of all the eigenvectors, then 
the system of equations and the superposition of the solutions gives a solution y which is an approximation of the exact 
solution.  
 
In SCIA Engineer, C-orthogonality is assumed and it is also assumed that all modal damping factors are constant. This 
means that: 

ϕ୘. C. ϕ = 2. ω୧. ξ. δ୧୨ 
(7.4) 

 
The value of ξ is one of the input data and is called damping factor. 
 
The number of eigenvectors that is taken into account is also specified by the user. This value is equal to the number of 
eigenvectors computed in the eigenvalue computation.  
The method used to solve each uncoupled second order differential equation is the Newmark-method. This method is 
unconditionally stable but the accuracy depends on the time step. This time step has to be given by the user. However, 
to help him in his choice, a value determined by the program will be used if the user does not specify a value. This 
proposed value is computed as: 0,01 T  
Where T smallest period of all the modes which have to be taken into account. 
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This proposed value guarantees accuracy better than 1% over each period of integration of this highest mode. In most 
cases, a larger time step can be used because the contribution of this last mode is small.  
This brings us to the question about the number of modes that should be used. When the time dependent terms on the 
left hand side of equation (7.3) are neglected, the solution for qj (a term of Q) is: 
 

q୨ =
1

ω୨
ଶ . ϕ୨

୘. F 

(7.5) 
 
This indicates that the lowest eigenmodes (ω୨ small) will contribute more than the highest modes (ω୨ large), if dynamic 
terms are neglected. This can give a first idea on how many modes to use.  
 
A second criterion is the periodicity of F. Any mode which coincides with the loading frequency should be taken into 
account.  
 
Modal weight is a third criterion that can be used. If you add all modal weights in a particular direction together and 
divides this result by 9.81*sum of nodal masses in the same direction, you obtain a value smaller than 1. If this value is 
close to 1, it means that the higher modes will not contribute anymore. If, on the contrary, the value is smaller than 0,9, 
one can doubt about the value of a subsequent modal superposition. 
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13.2 Direct-time integration in SCIA Engineer 
 
In SCIA Engineer, it’s possible to input a dynamic function. This can be used for different purposes, for example: harmonic 
loads, explosions, … In this case, the user has to input a dynamic function which presents the frequency in function of the 
time. 
 
The following diagram shows the different steps which have to be performed for the time history calculation: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
This functionality is only available in 32-bit version of SCIA Engineer! 
 
 

  

Activate the functionalities “Dynamics”  
and « Dynamic time-history analysis » 

Create a mass group 

Create a mass combination 

Specify the number of Eigenmodes to be calculated 
 

Refine the Finite-Element mesh is required 

Perform a linear calculation 

Input masses Generate masses from static load cases 

Define a « Time » load function 

Create a « Time » load case 
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------------------------------------------------------------------------------------------------------------------------------------------------------------- 
Example 12-1.esa 
 
In this example an explosion is simulated on a concrete plate. 
 

 
 
The plate has a dimension of 6x6 m and the thickness is 300 mm. The plate will be calculated according to the EC-EN and 
is made of concrete grade C30/37. The four corners are supported by hinged supports.  
 
Three load cases are introduced: 

- Self-weight 
- Permanent surface load: -4 kN/m² 
- Variable point load: blast of -11 kN 

 
 
Step 1: functionality 
 
In the “Project settings”, activate the options « Dynamics » and « Dynamic time-history analysis »: 
 

 
 
 
Step 2: mass groups and masses 
 
Open the menu ‘Dynamics’ and a mass group will be created here. For this, the permanent surface load of  
-4 kN/m² is used. For this, you can click on the ‘create masses from load case’ button. 
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A surface mass of 407,7 kg/m² is created. 
 
 
Step 3: mass matrix 
 
Next, a combination of mass groups can be created: 
 

 
 
 
Step 4: dynamic load function 
 
After the creation of masses, the explosion can be simulated by means of a dynamic load function.  
 
Go to ‘Libraries > Loads > Dynamic load functions’.  
Here you can input the input of load coefficients in function in time.  
Two types of functions can be input, namely a base and/or modal function. If both are introduced, the user can choose if 
these functions have to be multiplied or summarized.  
4 types of functions can be chosen: constant, linear, parabolic or sinusoidal.  
 
In our example a modal function is created with linear lines: 
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This function has to be attributed to a point load. We will do this in step 6. 
 
 
Step 5: a “general dynamics” load case 
 
A load case is introduced to simulate this explosion. 
The action type is « Variable » and the type of load « Dynamic ». 
 

 
 
For the load group, the user can choose a special case, namely « Accidental »: 
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Next, the specification has to be selected and the type General dynamics has to be chosen for a time history calculation.  
 
For this, we need some extra parameters: 

- « Total time » : The total time of the dynamic analysis. 
- « Integration step » : When “Auto” is checked, then 1/100 of the smallest period is taken. When “Auto” is not 
checked, then the user is allowed to select an integration step value. 
- « Output step » : Step for generating the load cases. The value need to be bigger or equal at the integration step. 
- « Log Decrement » : Damping defined as logarithmic decrement. 

 
 
Step 6: input of loads which follow the load combination  
 
In this step, you will create of a nodal force. Only nodal forces can be linked to a dynamic function.  
The value of the nodal force, will be multiplied with the coefficients in the function to achieve the final force in function 
of time. 
 
A point force of -11 kN is input in the middle of the plate. The user has the option to attribute the dynamic function DLF1 
to this load. 
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Step 7: mesh setup 
 
Before the calculation, the mesh is refined to get precise results. 
 

 
 
 
 
Step 8: linear calculation 
 
Now, the linear calculation can be performed.  
 
When the calculation is finished, new load cases are created which present the influence of the blast on the structure on 
each output step (the output time must always be smaller than ‘Total time’, so in this example, we used 1,51 s as total 
time to get an output at 1,50 s): 
 

 
 
To find the most extreme result, there load cases can be input in a Result class. 
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Step 9: results 
 
The eigen frequencies are shown in the “Results” menu: 
 

 
 

 
Other results, like for example deformations, can be regarded for the different output steps: 
 

- After 0,3 seconds: 
 

 
 

- After 0,6 seconds: 
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- After 0,9 seconds: 
 

 
 

- After 1,2 seconds: 
 

 
 

- After 1,5 seconds: 
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Or we can ask the result for the class which has been generated for the load cases. 
 

 
 

 
 
 
If you choose refresh, then you can see Uz for each 0,3 seconds in the selected node. 
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If we would set the output step to 0,01 s in the dynamics load case, then you would get 150 load cases. 
 

 
 
 
And as a result, the “deformation in nodes” graph would give more detailed representation: 
 

 
------------------------------------------------------------------------------------------------------------------------------------------------------------- 
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------------------------------------------------------------------------------------------------------------------------------------------------------------- 
Example 12-2.esa 
 
In this example a running load over a bar is simulated: 
 

 
 
The beam has a length of 20 m and a section HE200A. The beam will be calculated according to the EC-EN and is made 
of steel S235. The edges are supported by hinged supports.  
 
Two load cases are introduced: 

- Self-weight 
- Variable dynamic load: point loads of -100 kN on every 2 m over the beam 

 
 
Step 1: functionality 
 
In the “Project settings”, activate the options « Dynamics » and « Dynamic time-history analysis ». 
 
 
Step 2: mass groups 
 
Open the menu ‘Dynamics’ and a mass group will be created here. For this, no mass is inputted. Only the self-weight is 
taken into account. 
 
 
Step 3: mass matrix 
 
Next, a combination of mass groups can be created. 

 
 
 
Step 4: dynamic load functions 
 
After the creation of masses, the running load can be simulated by means of dynamic load functions . 
 
In the menu Library / Loads / Dynamic load functions, the input of frequencies in function in time is asked. 
 
Two types of functions can be input, namely a base and/or modal function. If both are introduced, the user can choose 
if these functions have to be multiplied or summarized.  
4 types of functions can be chosen: constant, linear, parabolic or sinusoidal.  
 
In this example 9 modal functions are created with linear lines: 

- DLF1 is 1,00 from 0,2s to 0,4s 
- DLF2 is 1,00 from 0,4s to 0,6s 
- … 
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Each function will be attributed to a different point load (cf step 6): 

- DLF1 to the first point load from the left. 
- DLF2 to the second point load from the left. 
- … 

 
These 9 load functions will be used to simulate the effect of a point load moving from left to right over a time period is 
simulated. On each point (every 2m) the point load stays for a time of 0.20sec. So it takes 2 seconds for the point load to 
cross the whole beam. 
 
 
Step 5: general dynamics load case 
 
A load case is introduced to simulate this running load.  
The action type is Variable and the type of load Dynamic 
For the load group, the user can choose a special case, namely Accidental. 
 

 
 



Advanced Training - Dynamics 

208 

Next, the specification has to be selected and the type General dynamics has to be chosen for a time history calculation. 
After choosing general dynamics, some extra parameters have to be defined. 
 

- Total time [s]: The total time of the dynamic analysis. 
 

- Integration step: When “Auto” is checked, then 1/100 of the smallest period is taken. When “Auto” isn’t checked, 
then the user is allowed to select an integration step value. 

 
- Output step [s]: The step is used to determine on which points in time results must be generated. These will be 

saved in new generated load cases. 
 

- Log Decrement: Damping defined as logarithmic decrement. 
 

 
 
 
Step 6: input of loads 
 
In this step, nodal forces will be inputted. Dynamic load functions can only be linked to nodal forces. Since they are ‘nodal’ 
forces, the user must provide internal nodes to place these internal forces on. Every 2 m an internal node has to be 
created on the beam. On each of these nodes a point force of -100 kN is set. The first point force from the left is linked 
to DLF1, the second to DLF2,...  
This models the movement a single point load over the beam left to right over the beam in a total time of 2 sec. 
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Step 7: linear calculation 
 
Now, the calculation can be performed.  
When the calculation is finished, new load cases are created which present each output step: 
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To find the most extreme result, these load cases are automatically input in a result class: 
 

 
 
 
Step 8: results 
 
The eigen frequencies are shown in the results menu: 
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Other results, like for example deformations, can be regarded for the different output steps: 
 

- After 0,5 second: 

 
- After 1 second: 

 
- After 1,5 seconds: 

 
- After 2 seconds: 

 
- After 2,4 seconds: 

 
- The result class shows the envelope of all possible results over time: 
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It is also possible to see the result in a certain point for all load cases in one picture. By this it is possible to see the result 
over the time.  
 
Consider for instance the vertical displacement of the middle node N6. 
 

 
 
 
The deformation of the middle node in function of the time is shown in the result preview: 
 

 
 
 
his result clearly represents the vibration of the middle point over time. 
------------------------------------------------------------------------------------------------------------------------------------------------------------- 
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CHAPTER 14 : VORTEX SHEDDING : KARMAN VIBRATION 
 
 
 
 
In this chapter, the transverse vibration of cylindrical structures due to wind is examined.  
 
First the theory is explained in which reference is made to the Harmonic load since Vortex shedding is a special case of 
harmonic loading.  
The theory is then illustrated by an example of a steel chimney. 
 
 
 
 

14.1 Theory 
 
One of the most important mechanisms for wind-induced oscillations is the formation of vortices (concentrations of 
rotating fluid particles) in the wake flow behind certain types of structures such as chimneys, towers, suspended 
pipelines,…  
At a certain (critical) wind velocity, the flow lines do not follow the contours of the body, but break away at some points, 
thus the vortices are formed.  
These vortices are shed alternately from opposite sides of the structure and give rise to a fluctuating load perpendicular 
to the wind direction. The following figure illustrates the vortex shedding for flow past a circular cylinder. The created 
pattern is often referred to as the Karman Vortex Trail : 
 

 
 
When a vortex is formed on one side of the structure, the wind velocity increases on the other side. This results in a 
pressure difference on the opposite sides and the structure is subjected to a lateral force away from the side where the 
vortex is formed. As the vortices are shed at the critical wind velocity alternately first from one side then the other, a 
harmonically varying lateral load with the same frequency as the frequency of the vortex shedding is formed. 
 
The frequency of the vortex shedding fv is given by: 

f୴ =
S. v

d
 

(13.1) 
 
With: 
 S non-dimensional constant referred to as the « Strouhal Number ». 

For a cylinder, this is taken as 0,2. 
 D width of the body loaded by the wind (m). 
  For a cylinder, this equals the outer-diameter. 
 v mean velocity of the wind flow (m/s). 
 
The manner in which vortices are formed is a function of the Reynolds number Re, which is given by: 

Re = 0,687.v.d.105 
(13.2) 
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In general, large Reynolds numbers mean turbulent flow. 
 
The Reynolds number characterizes three major regions: 
 

- Sub-critical: 
300 ≤ Re ≤ 10ହ 

- Super-critical: 

10ହ ≤ Re ≤ 3,5.10଺ 
- Trans-critical: 

3,5. 10଺ ≤ Re 
 
For chimneys with circular cross section the flow is either in the supercritical or trans-critical range for wind velocities of 
practical interest. 
 
If the vortex shedding frequency coincides with the natural frequency of the structure (resonance) quite large across-
wind amplitudes of vibration will result unless sufficient damping is present. This principle was already discussed in a 
previous chapter.  
In this case, formula (13.1) can be rewritten to calculate the critical wind velocity at which resonance occurs: 

vୡ୰୧୲ = 5. d. f 
(13.3) 

With: 
f natural frequency of the structure. 

 
The across-wind forces per unit length caused by the vortex shedding can be approximated by the following formula: 

P୐(t) =
1

2
. ρ. d. vୡ୰୧୲

ଶ . C୲(t) 

(13.4) 
 

With: 
 ρ air density taken as 1,25kg/m3 

Ct(t)  lift coefficient that fluctuates in a harmonic of random manner and depends of the Reynolds  
number. The following figure shows this relation when Ct is proportional to the mode shape. 

 

 
 
If the vortex shedding is taken as harmonic, equation (13.4) can be written as: 

P୐(t) = P଴. sin(ω୴t) =
1

2
. ρ. d. vୡ୰୧୲

ଶ . C୲. sin(2. π. f୴) 

(13.5) 
 
Assuming a constant wind profile, the equivalent modal force due to the fluctuating lift force of equation (13.5) is given 
by: 

P(t) = P୐. sin(ω୴t) =
1

2
. ρ. d. vୡ୰୧୲

ଶ . sin(2. π. f୴). න C୲(z)
ୌ

଴

{ϕ(z)}dz 

(13.6) 
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With: 
 ϕ(z) modal shape at height z 
 H total height of the structure 
 
As seen in a previous chapter, the dynamic amplitude Y at resonance can be written as : 

Y =
Yୗ

2ξ
 

(13.7) 
 
The static deformation YS is given by: 

Yୗ =
P଴

K
=

P଴

M. ωଶ
 

(13.8) 
 
M is the equivalent modal mass of a prismatic member given by: 

M = න m(z). {ϕ(z)}ଶdz
ୌ

଴

 

(13.9) 
 
With:  

m(z) mass per unit height. 
 
When combining formulas (13.7) and (13.8) the maximum response of a SDOF system subjected to a harmonic excitation 
may be written as: 

Y =
P୐

M. ωଶ
.

1

2ξ
 

(13.10) 
 
It follows that when the vortex shedding occurs with the same frequency as the natural frequency of the structure, the 
maximal amplitude is given by: 

Y =

1
2

. ρ. d. vୡ୰୧୲
ଶ . ∫ C୲(z){ϕ(z)}dz

ୌ

଴

ωଶ. ∫ m(z){ϕ(z)}ଶdz
ୌ

଴

.
1

2ξ
 

(13.11) 
 
When it is assumed that the mass per unit height is constant and that the lift coefficient is proportional to the mode 
shape, formula (13.11) can be simplified to the following: 

Y =
ρ. dଷ. C୲

16. πଶ. Sଶ. m. ξ
 

(13.12) 
 
This equation may be used as a first estimate of likely response of the structure. 
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14.2 Vibration  Karman in SCIA Engineer 
 
 
In SCIA Engineer, the Vortex Shedding was implemented according the Czech loading standard.  
 
The effect is only taken into account if the critical wind velocity calculated by formula (13.3) is between a minimal and 
maximal value. These two extremes can be defined by the user. According to the Czech loading standard, these values 
are taken as 5 m/s and 20 m/s.  
 
In addition to formula (13.11), in SCIA Engineer it is possible to specify the length of the structure where the Von Karman 
effect can occur. For each geometric node of the structure, it is possible to relate a length of the cylinder to the node. 
This implies that, in order to obtain precise results, the structure should be modeled with sufficient geometric nodes.  
 
By default the effect can occur over the entire height of the structure however, when there are specific obstacles on the 
surface of a chimney for example, these obstacles will hamper the formation of the vortices and thus reduce the Von 
Karman effect. In practice, this is exactly the solution to suppress vortex-induced vibration: the fitting of special ribs on 
the surface of the cylinder.  
 
The following diagram shows the required steps to perform a Vortex Shedding calculation : 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Activate the « Dynamics » functionality 

Create a mass group 

Create a mass combination 

Specify the number of eigenmodes to be calculated 
 

Refine the Finite-Element mesh if required 

Perform a linear calculation 
linéaire 

Input masses Generate masses from static load cases 

Create a Karman Vibration load case 

Input Karman loads (lengths) 
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This diagram will be illustrated in the following example. 
 
 
------------------------------------------------------------------------------------------------------------------------------------------------------------- 
Example 13-1.esa: 
 
In this example, a steel chimney is modeled with a fixed base.  
 
The chimney has an outer-diameter of 1,2 m and a thickness of 6 mm. The total height is 30 m and the structure is 
manufactured in S 235 according to EC-EN.  
To take into account the weight of insulation, electrical cables and other non-structural elements, a distributed mass of 
55 kg/m is inputted.  
No specific structural measures are taken to prevent the vortex shedding thus the entire length of the chimney must be 
taken into account for the Von Karman vibration.  
To this end, the chimney is modeled as a cantilever built up as 30 members to create sufficient geometric nodes. Each 
node (except the base and top) will be assigned a chimney length of 1m.  
For the logarithmic decrement of the chimney, a value of 0,025 is used.  
 
One static load case is created: the self-weight of the structure. 
 

 
 
 
 
Step 1: functionality 
 
The first step in the Karman Vibration calculation is to activate the functionality Dynamics on the Functionality tab in the 
Project Data. 
 
 
Step 2: mass groups 
 
The second step is to create a Mass Group: 
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Actually, this mass group doesn’t contain anything, since the self-weight is automatically taken into account. But to do 
dynamic calculation, at least one Mass Group needs to be defined.  
In this mass group, we are going to place some additional masses. This will be added to the mass coming from the self-
weight (which is always and automatically taken into account). 
 
 
Step 3: masses 
 
After the Mass Group has been created; the distributed mass of 55 kg/m can be inputted on all members: 
 

 
 
 
Step 4: mass matrix 
 
Next, the Mass Group is put within a “Combination of Mass Groups”, which can be used for defining the harmonic load. 
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Step 5: Karman vibration load case 
 
After creating a Mass Combination, a Karman vibration load case can be defined through Load cases, Combinations > 
Load Cases.  
 
The « Action Type » of the Load Case is set to « Variable ».  
 
The « Load Type » can then be changed to « Dynamic ».  
Within the “Specification” field, the type of dynamic load can be set, in this case Karman vibration.  
 

-  The “logarithmic decrement” was given to be 0,025.  
-  The “Diameter of the tube” was 1,2m.  
-  The “Wind direction” is defined in the Global Coordinate System. A direction of 0,00 deg specifies the global X-axis. 

This implies that the Karman vibration will occur in a direction along the Y-axis (perpendicular to the wind 
direction).  

-  As specified in paragraph 6.2 the minimal and maximal wind velocities are set to 5 m/s and 20 m/s respectively. 
Vortex shedding will only occur if the critical wind velocity is between these two limits. 

- The option “Select eigenshape” can be used to manually specify for which eigenmode the Vortex shedding needs 
to be calculated. When this option is left to ‘Automatic’, SCIA Engineer determines the representative mode 
automatically (which is the one with the biggest modal participation factor in the relevant direction). 
 

Since the wind direction is set along the global X-axis, the representative mode will be a mode shape along the global Y-
axis. 
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Step 6: Karman load 
 
The parameters of the load case have been defined, what is left is to specify the length of the structure where the Von 
Karman effect can occur.  
 
As indicated in a previous paragraph, SCIA Engineer allows relating a length of the chimney to each geometric node. This 
load can be inputted through Load > Point Force > Karman Load  
 
As no specific measures were taken to prevent vortex shedding and since the chimney was inputted as  
30 members, each node is assigned a length of 1 m.  
 
Additional nodes are made at 0,25m from the base and top. These nodes also get Karman loads assigned to them of 0,50 
m. 
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Step 7: mesh setup 
 
To obtain precise results for the dynamic calculation, the Finite Element Mesh is refined. The “Average number of tiles of 
1D element” is set to 5 through “ Mesh Setup”: 
 

 
 
 
 
Step 8: solver setup 
 
The last step before launching the calculation is setting the amount of eigenmodes to be calculated. The default value in 
“ Solver Setup” is 4. This is sufficient for this example. 
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Step 9: linear calculation and results 
 
All steps have been executed so the “Linear Calculation” can be started through “Calculation”.  
The “Calculation Protocol” for the Eigen Frequency calculation shows the following: 
 

 
 
 
The details of the Karman Vibration calculation can be found in the “Calculation Protocol” for the linear calculation: 
 

 
 
As expected, the Vortex shedding was analyzed for the second eigenmode, the mode with largest mass participation in 
the Y-direction.  
 
The Maximum and Reduced loads are intermediate results used to calculate the across-wind forces. 
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The maximum horizontal translation for the second eigenmode can be found through “Deformation of Nodes” (note that 
the value has no relevance, the direction however is very important): 
 

 
 
In the same way, the total deflection of the top of the chimney caused by the Karman Vibration can be shown: 
 

 
 
Because of this large translation at the top, at the base of the chimney considerable stresses will occur.  
As specified in a previous chapter, a combination of type “Envelope” provides the possibility for considering both sides 
of the vibration amplitude since a vibration is always in both directions.  
An envelope combination is created for the chimney to evaluate the stresses at the base: 
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The “Member Stresses” for the lower member of the chimney give the following normal stresses for the combination: 
 

 
 
A stress range of 140,6 MPa will lead to significant fatigue problems after even a low amount of cycles. This is one of the 
most reported types of failures due to Vortex shedding.  
 
A solution to this problem is the fitting of a helix type rib to prevent the correlation of the vortices (and thus lower the 
chimney-length which should be considered for the Von Karman effect). The disadvantage of such a rib is that it increases 
the drag force. 
 
Since the Vortex shedding is a state of resonance, the amplitude is damping dependent as explained previously. Another 
solution is thus to increase the damping by installing a tuned mass damper system. 
------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 
 


