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Chapter 1: INTRODUCTION

The examples in this manual can be made in a full licensed as well as in a try-out or student version of SCIA
Engineer.

Here follows an overview of the required SCIA Engineer modules / editions, per subject:

- Eigen frequency calculations
Esas.21 (Dynamics (natural frequencies) — Frames) Professional edition
Esas.22 (Dynamics (natural frequencies) — Surfaces) Professional edition

- Advanced dynamic calculations
Esas.23 (Dynamics (advanced) — Frames) Professional edition
Esas.24 (Dynamics (advanced) — Surfaces) Professional edition

- Non uniform damping characteristics
Esas.25 (Non uniform damping — Frames) Not part of an edition

Dynamic calculations are not so frequent in civil engineering as static calculations. On the other hand, they
are inevitable in certain projects. Wind effects on high-rise structures, transverse vibration of towers and
chimneys, structures located in seismic regions,...

SCIA Engineer contains specialized modules covering common dynamics-related issues. In this course, the
different aspects of these modules are regarded in detail.

First, the foundation of dynamic calculations is examined: the eigen frequency calculation. Eigen frequencies
form the basis for all types of dynamic analysis.

In one of the last chapters, the eigen frequency calculation is extended with harmonic loads: the influence of
for example vibrations due to machinery, can be calculated using these principles.

Two chapters are devoted to seismic calculations and the influence of damping on the seismic action.

All chapters are illustrated with examples. The relatively easy examples have been purposefully chosen to
provide a clear understanding of what actually happens in the dynamic calculations. To this end, nearly all
calculations have been verified by manual calculations to give a good insight into the application of the theory
in SCIA Engineer.

When the principles are clearly understood, they can be applied to more complex structures without difficulties.

'! Functionalities from chapters 2 to 9 are available on the 64 bits version of SCIA
Engineer.
7 But, for the moment, functionalities from chapters 10 to 13 are only available on the 32
bits version.
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In this chapter, the calculation of eigen frequencies in SCIA Engineer is explained in detail.

Eigen frequencies can be required to verify comfort criteria for buildings, to analyse wind-induced resonance
for bridges, to check requirements for sensitive equipment,...

First, the theory behind the calculation is discussed and illustrated with an example. The procedure is then
used for both frame and slab structures. The results of all examples are compared with manual calculations to

provide a clear understanding of the applied principles.

2.1 Theory

To understand what is going on during the dynamic analysis of a complex structure with frames or finite
elements, the free vibration of a SDOF (Single Degree Of Freedom) system is regarded in detail. A complete
overview can be found in reference [1].

Consider the following system:

A body of mass m is free to move in one direction. A spring of constant stiffness k, which is fixed at one end,
is attached at the other end to the body.

The equation of motion can be written as:
m.y(t) +kyt) =0 (2.1)

A solution for this differential equation is:
y(t) = A.cos (wt)

Inserting this in (2.1) gives:
(-m. w? + k). A. cos(wt) = 0 (2.2)

This implies that:

(2.3)
Where w is called the natural circular frequency.
The natural period T can be written as:
21
T=—
w
(2.4)
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The natural frequency (or eigen frequency) f can be written as:

f_l_oo
T 2n

(2.5)

For a general, MDOF (Multiple Degree Of Freedom) structure, equation (2.1) can be written in matrix notation:
M.U+KU=0 (2.6)

Where:
U is the vector of translations and rotations in nodes,
U is the vector of corresponding accelerations,
K is the stiffness matrix assembled during the dynamic calculation,
M is the mass matrix assembled during the dynamic calculation.

From this equation, it is clear that the calculation model created for a static analysis needs to be completed
with additional data: masses.
The solutions of (2.6) are harmonic functions in time. A possible solution can have the following form:

U= &.sin (w.(T —Ty) (2.7)

Notice that in this solution, a separation of variables is obtained:
- The first part, (®), is a function of spatial co-ordinates,
- The second part, sin (w. (T — Ty), is a function of time.
When substituting (2.7) in (2.6), an equation is obtained which is known as the Generalized Eigenproblem
Equation:
K®—wMd=0 (2.8)

The solution of (2.8) yields as many eigenmodes as there are equations.
Each eigenmode consists of 2 parts:
- Aneigenvalue: value w;
- An eigenvector: vector ®;, which is not fully determined. The deformation shape is known, but the
scale factor is unknown.

This scale factor can be chosen in different ways. In the next paragraph this will be explained further.

An overview of the mathematical (matrix) approach behind the calculation of eigenvalues and eigenvectors
can be found in reference [25].

2.2 Eigen Frequencies in SCIA Engineer

In SCIA Engineer, as scale factor, a M-orthonormalisation has been implemented. This is shown in the
following relation:
oI Md; =1 (2.9)

Some of the characteristics of M-orthonormalisation are :
O M.®; =0 quandi#j (2.10)
Ol K @; = w? (2.11)

The M-matrix (the mass matrix) can be computed in different ways. SCIA Engineer uses the so-called lumped
mass matrix representation of the M-matrix. The lumped mass matrix offers considerable advantages with
respect to memory use and computational effort because in this case the M-matrix is a diagonal matrix. The
masses are thus guided to the nodes of the Finite Element mesh.

This principle is illustrated on the following figure [28]:
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The calculation of eigenmodes and eigen frequencies is thus made on a discretised finite element model of
the structure. This means that instead of a general structure with an infinite number of degrees of freedom, a
calculation model with a finite number of degrees of freedom is analysed.

The number of degrees of freedom can generally be determined by a simple multiplication: the humber of
mesh nodes is multiplied by the number of possible displacements in the node.

It is important to know that the accuracy of the model is in proportion to the "precision of discretisation”, i.e.
to the number of elements of the finite element mesh. This refinement has almost no practical meaning in
static calculations. However, for dynamic and non-linear analyses, it significantly affects the accuracy of the
results.

Consider the following example. A beam on two supports is loaded by its self-weight. By default (for a static
calculation) there is only one finite element for the beam. Taking the above into account, the mass M of the
beam will be guided to the two end nodes of the beam since these correspond with the mesh nodes of the

finite element mesh.
M/2 M/2

m

/ \

In this case, this means that the entire mass will be located in the supports so no mass can go into vibration
and the dynamic calculation cannot be executed. As indicated, a mesh refinement is required here to attain
results.

The following diagram shows the required steps to perform a Free Vibration calculation:

Activate the Dynamics functionality

A
Create a mass group

/\

Input masses Generate masses from static load cases

o~

Create a mass combination

!

Refine the Finite-Element mesh if required

!

Specify the number of eigenmodes to be calculated

!

Perform a free vibration calculation
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The analogy between a static and dynamic calculation is clear:

- In a static calculation, Loads are grouped in Load cases and the Load cases are used in Combinations.
- In a dynamic calculation Masses are grouped in Mass Groups and the Mass Groups are used in Mass
Combinations.

The required steps from this diagram are illustrated in the following example.

Example_02-1.esa

In this example, a beam on two supports is modelled. The beam has a cross-section type IPE 200, a length
of 6m and is manufactured in S235 according to EC-EN. A node has been added to the middle of the beam,
which will make it possible to add a nodal mass in that location.

| 6000

IPE200Q
==

JAN JAN

Only one static load case is created: the self-weight of the beam.

Step 1: functionality

The first step in the Dynamic calculation is to activate the functionality Dynamics on the Functionality tab in
the Project Data.

Project data X

Basic data Functionality Actions UnitSet Protection

GENERAL DETAILED
Property modifiers 4 Dynamics
Model modifiers Modal & harmonic analysis
Parametric input Seismic spectral analysis
Climatic loads Dynamic time-history analysis
Mobile loads 4 Subsoil
Dynamics D Pad foundation check
Stability 4 Steel
Nonlinearity Fire resistance checks
Structural model Steel connections
IFC properties Scaffolding
Prestressing
Bridge design
Construction stages

OK Cancel
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When this is done, a new menu, « Dynamics » will appear in the main menu “Library”:

£ Layers
2 Materials Ctrl+M
I Cross sections Ctrl+J

Picture gallery
Paperspace gallery

Load cases, combinations »

Loads >

Dynamics » | = Massgroups

Structure and analysis > j Combination of mass groups
Tools 4

Steel >

Subsoil and foundation >

Drawing tools >

And also in the input panel:

INPUT PANEL #&%  Dynamics

= All categories v 0 All tags

Step 2: mass group

The second step is to create a Mass group.

HEEFE «~ O B A vy
MG1 Name MG1
Description
Bound to load case Yes v
Load case LC1-Self weight o

Keep masses up-to-date with loads

Actions
Create masses from load case >>>
Delete all masses >>>

New Insert Edit Delete Close

As indicated in the diagram, a Mass Group is used to group masses in a same way a Load Case is used to
group Loads. When a Mass Group is defined, masses can be inputted.

SCIA Engineer also allows the user to create masses from a static load case.

When for example a roof weight is inputted as line loads, the action “Create masses from load case” will
automatically generate masses from these line loads. It is clear that this provides a quick input of necessary
data. When the option “Keep masses up-to-data with loads” is ticked on, then the action to create masses
will create masses which remain linked to the loads of the load case. The amount of mass in a ‘linked’ mass
is updated each time you click on the action button “Create masses from load case” or each time you perform
a calculation.

MJA — 2024/08/23 11
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Notes:

- The self-weight of a structure is always taken into account automatically for a dynamic calculation.
Even if there is no mass group linked to self weight. The mass of the self-weight is not displayed.

- When specifying a load case but not using the action ‘Create masses from load case’ nothing will
happen: no masses will be created.

- When creating masses from loads, SCIA Engineer will use the acceleration of gravity specified on the
Loads tab of the Project Data. By default this value is 9,81 m/s2.

- The mass remains unchanged after any modification or deletion of the original force. If the mass is
intended to correspond to the new force, it is necessary to delete the mass and create it again.

- The mass is generated only from vertical force components.

- Free loads cannot be converted into masses.

Step 3: masses
When Mass Groups are created, Masses can be inputted on the structure. SCIA Engineer allows the input of:
- Mass in node

- Point mass on beam
- Line masse on beam

INPUT PANEL @& Al workstations
= Masses 0 All tags
- Surface mass
- Line mass on surface edge
- Point mass on surface edge
INPUT PANEL & All workstations
= Masses 0 All tags

2 Al U= A=

In this example, a mass of 500 kg will be inputted on the middle node of the beam using “Mass in node”.

# " Mass in node X

Name MN1
M[kg] 500.00
Koeff mx 1
Koeff my 1
Koeff mz 1
Imx [kgm*2] 0.00

/ imy [kgm*2] 000
Imz [kgm*2] 0.00

OK Cancel

The parameters Koeff mx, Kbeff my'and Koeff mz specify how much of the mass will participate in the
vibration according to the global X, Y or Z axis.
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This can be used when calculating for example a chimney: when Koeff mx is put on 1 and Koeff my and
Koeff mz are taken 0, then the mass can only vibrate in the global X-direction so only eigenmodes in that
direction will be obtained.

Imx, Imy and Imz specify the moment of inertia around the global X, Y or Z axis. By default a nodal mass is
concentrated so it has no inertia. When the mass represents a large machine, it is possible to input the moment
of inertia of this machine.

The nodal mass of 500 kg is inputted on the middle node of the beam:

MNT . 4 50000

Notes:
- To display masses and mass labels, make a right click on the screen and go to + « Set view

parameters for all », and tab « Loads / Masses ».
- Masses are Additional Data, which can be moved / copied to other entities.

Step 4: mass matrix

Next, the Mass groups can be combined within a Combination of Mass Groups.
This is actually the mass matrix M which has been mentioned in the beginning of this chapter.

B " Combinations of mass groups X
= -fEFE &2 [ Inputcombinations vY
M1 Name CM1

Description
4 Contents of combination
MG1 [-] 1.000

New Insert Edit Delete Close |

The Combination of Mass Groups works in the same way as a linear Load Combination.

A multiplication coefficient can be inputted for each Mass Group. This coefficient can be used when the mass
of a structure changes during its lifetime. Consider for example a water tank. One Combination of Mass Groups
can be created with a coefficient 1,00 to specify a full tank and another Combination of Mass Groups can be
created with a coefficient 0,50 to specify a tank, which is half-full. In this way, both cases can be calculated in
one time. As stated in step 2: the self-weight is automatically taken into account for each Combination of Mass
Groups.
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Step 5: mesh setup

After executing the previous steps, the calculation can already be started. However, as stated previously it can
be required to refine the finite element mesh.
This can be done though the main menu Tools / Calculation & Mesh / Mesh settings :

# " Mesh setup X

Name MeshSetupl

[ Average number of 1D mesh elements on straight 1D members 1 ]

Average size of 1D mesh element on curved 1D members [m] 0.200
( Average size of 2D mesh element [m] 1.000 ]

Connect members/nodes

Setup for connection of structural entities
4 Advanced mesh settings
4 General mesh settings
Minimal distance between definition point and line [m] 0.001

Definition of mesh element size for panels Manual v
Average size of panel element [m] 1.000
Elastic mesh
Use automatic mesh refinement

4 1D elements

e — a——an - —— s

Average size of 2D mesh element

BEa & OK Cancel

For 1D members (beams) the Average number of tiles of 1D element can be augmented. In general, 5 to
10 tiles are sufficient for a dynamic calculation. When specifying a too high amount, the calculation will take a
long time to complete. For 2D elements (plates & shells) the Average size of 2D element needs to be altered.

In this example, due to the inserting of the middle node, there is already a mesh node there, so it is not required
to have a denser Finite Element Mesh. This can be seen after mesh generation :

SCIA Engineer: End of analysis X

Preparation for mesh generation: OK
Preparation of calculation settings: OK

Mesh generation: OK

Number of nodes: 3
Number of 2D elements: 0
Number of 1D elements: 2

N | - : AN

Note: To display the numbering of finite elements, make a right click on the screen + « Set view parameters
for all »:

- Tab « Structure », in « Mesh », and tick « Draw mesh » on.

- Tab « Labels », in « Mesh », tick « Display label & Elements 1D » on.

14 MJA — 2024/08/23



Step 6: solver setup

Another important step before launching the calculation is to specify the amount of eigenmodes that need to
be calculated and with which method they can be calculated.
This can be done through the main menu Tools / Calculation & Mesh / Solver settings.

B ° Solver setup X

Name SolverSetupl
Specify load cases for linear calculation
Specify combinations for linear stability calculation
Specify combinations for nonlinear stability calculation
4 Advanced solver settings
P General
P Effective width of plate ribs
P Nonlinearity
4 Initial stress
Initial stress

4 Dynamics

[ Type of eigen value solver Lanczos v

Number of eigenmodes 1

Modal mass matrix Diagonal v
Use IRS (Improved Reduced System) method
P Mass components in analysis
P Linear stability
P Nonlinear stability

BEa & OK Cancel

By default, the Lanczos method is used. This method is set as default even in older projects where originally
another method was used. In comparison with older methods, the Lanczos method is faster and more stable.
As explained above, the number of eigen frequencies is dependent of the number of degrees of freedom of
the structure which are on their turn dependent of the discretisation.

In this example, only the mesh node located in the middle of the beam can vibrate vertically. Therefore only
one eigenmode needs to be calculated. The Number of Frequencies can thus be lowered to 1.

The modal mass matrix can be Diagonal or Consistent.

In the first case (diagonal matrix), masses are affected to nodes. The matrix contains only components in
diagonal and in translation (not in rotation). This method is faster but less precise.

In the second case (consistent matrix), masses are distributed along the element with shape functions. The
matrix contains components in translation (but no in diagonal) and also in rotation. This method is more precise
but can lead to a more important calculation time.

™ ] L
™ - . ..
™ - . -
. L -
[ ] L L L
L - . - L
Diagonal matrix Consistent matrix

The option “Use IRS (Improved Reduced System) method” requires floors to be defined first, so this option
cannot be used now. “Produce wall eigenmode results (needed for ECtools)” is only used if you are using the
extra program ECtools to analyse seismic effects in masonry.
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Note: When the number of frequencies is higher than the amount of degrees of freedom, a message will appear
during the calculation, stating the calculation cannot be executed. The solution is to lower the number of
frequencies to be calculated or to apply a mesh refinement so more degrees of freedom are created.

B CALCULATION PROCESS

‘ Calculation ‘ € Results

Calculation failed

Too many eigenvalues wanted. Selected type of
eigenvalue solver is not able to calculate this model,
or number of eigenmodes is higher than the number

Name of degrees of freedom. Please try another eigenvalue
solution method in the solver settings
1 » Mesh calculation (recommended polynomial), or reduce the requested

number of eigenmodes in solver settings.

1 ¥ Modal analysis

® (M1 €) Too many eigenvalues wanted. Selected type of ei...

Step 7: modal analysis

The last step is to perform the Modal Analysis calculation through the main menu Tools / Calculation &
Mesh / Calculate.

° FE analysis X
4 Mesh setup

Average number of 1D mesh elements: 1

Calculations

Linear analysis

Average size of 1D mesh element on cu 0.200
Load cases: 1

Average size of 2D mesh element [m] 1.000
Connect members/nodes

Setup for connection of structural entit

Modal analysis
Eigenmodes: 1

Other processes
P Advanced mesh settings

Save project after analysis > Solver setup
4 Advanced solver settings
P General
P Initial stress
4 Dynamics
Type of eigen value solver Lanczos 37
Number of eigenmodes 1
Modal mass matrix Diagonal Y
Use IRS (Improved Reduced System) n
P Mass components in analysis
P Soil

Calculate

After performing the calculation, the option Eigen Frequencies becomes available on the “Results”
workstation:

a |
B & 0GP WG v F &R
g

The preview shows the following result:
Eigen frequencies

Mass combination : CM1
1 [6.32 [39.69 [1575.58 | 0.16

16 MJA — 2024/08/23



Step 8: calculation protocol

According to this calculation, the natural frequency of the first mode is shown to be 6,32Hz.
To view the results in more detail, it is possible to look at the Calculation protocol for the Eigen Frequency

calculation:
thet
Y
M
B & & O E D W e
Include list of assumptions
ACTIONS >»

Calculation protocol
Solution of Free vibration

Number of 2D elements 0

Number of 1D elements 2

Number of mesh nodes 3

Number of equations 18

Combination of mass groups | CM1

Modification group None

Number of frequencies 1

Lanczos

Bending theory Mindlin

Type of analysis model Standard

Modal mass matrix Diagonal
Sum of masses

Mass type

X Y F
[kg]l [kg] [kg]
CM1 | Moving mass 56712 | 63423 | 567.12
[cM1 | Total mass | 634.23| 634.23| e3¢.23]

Relative modal masses
Mode ega [rad Period Freq.

Name Calculation protocol

Type Eigen frequency

7 s & 4

N X

W [Wizce Wyt [Wyeer Wai/Waee g /Wt i m/Wyeat 21 8/Watat

[s] [Hz]

0.0000 1.0000

0.0000 0.0000

. 7 . 0.0000 7
0.0000| 1.0000| 0.0000] 0.0000| 0.0000]

Let’s see more in detail about the results in the calculation protocol.

Solution of the free vibration:

- The model was divided in 2 finite elements, resulting in 3 mesh nodes.
- Each node has 6 degrees of freedom (X, Y, Z, Rx, Ry, Rz) resulting in 18 equations.

- The combination of mass groups for the results was CM1.
- The number of frequencies set in the solver settings is 1.
- The Lanczos method was used to perform this calculation.

The Sum of masses shows the amount of mass, which can vibrate for this Combination of Mass Groups
(CM1). In this example, this is governed by the mass of 500 kg and the mass of the beam.

MJA — 2024/08/23
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The mass of the beam can be calculated as follows:
- The beam is an IPE 200 with cross-section A= 0,00285 m?
- The length of the beam is 6 m

- The volumetric mass of S 235 is 7850 kg/m3.
M = 0,00285 m? * 7850 kg/m? = 22,3725 kg/m

Now to find the total mass, we must assign the masses to the mesh nodes and take into account the vibrations
which are possible:

- Fornode 1: 1,5 m * 22,3725 kg/m = 33,5587 kg
(1/4 of the beam mass goes to the left node)

- Fornode 2: 3,0 m * 22,3725 kg/m + 500 kg = 67,1175 kg + 500 kg = 567,1175 kg
(1/2 of the beam mass goes to the middle node along with the nodal mass in the node)

- For node 3: 1,5 m * 22,3725 kg/m = 33,55875 kg
(1/4 of the beam mass goes to the right node)

[

A E— A

Direction X Direction Y Direction Z
Node 1 Fixed (Frame X2Z) Fixed
Node 2 567,1175 kg (Frame X2) 567,1175 kg
[\ [oo [K] Fixed (Frame X2Z) Fixed
Total 634,2349 kg X 634,2349 kg

Calculation Protocol 634,23 kg 0 kg 634,23 kg

As you can see, the sum of masses in the calculation protocol corresponds to the sum of masses in all mesh
nodes, taking into account the degrees of freedom in each node.

It is clear that a denser mesh will provide a more accurate participation of the beam mass.

The Modal Participation Factors show the amount of mass that is vibrating in a specific eigenmode as a
percentage of the total mass. In this example Wzi/Wztot is equal to 1 which means that 100% of the mass is
vibrating in the vertical direction for the first eigenmode. This means that in the other degrees of freedom, no
mass will be displaced in the Z-direction.

The Wyi_r/Wytot_ris equal to 1 means that this first eigenmode the only eigenmode in which mass can rotate
around the global Y-axis.

As a side note, we must indicate that these results will strongly alter once we use a finer mesh. Since more

nodes will add more degrees of freedom and thus more possible eigenmodes.
These factors will be looked upon in more detail during the Seismic calculations.
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Step 9: displacement of nodes

The eigenmode can be visualized through Displacement of nodes.

(5
= RESULTS (1) A | X
Name Displacement of nodes o
v SELECTION
Type of selection  All v
Filter No v

¥ RESULT CASE

Typeofload Mass combinations %

Mass combination CM1/1-6.32 v
Extreme Global v

Values U_z v

¥ DRAWING SETUP
Display value (¢
Display unit (‘(:
Display value name (D
Envelopes drawing 0 to extreme v

ACTIONS >>»
Refresh F5

« Selection » = All

- « Type of loads » = Mass combinations

- For each eigenmode, a specific mass combination can now be shown.
- « Value » = U, to view the displacement of nodes.

j'{‘." iOOn*ﬁ*

-42.0 mm

Displacement of nodes

Modal shapes are normalized, so that the generalized modal mass of each mode s equal to 1kg.
Mass combination: CM1/1 - 6.32

Extreme: Global

Selection: Al

N1 CM1/1 - 6.32 0.0 0.0 20.7 0.0
N3 CM1/1 - 6.32 00| -42.0 0.0 42.0
N2 CM1/1 - 6.32 0.0 0.0 -20.7 0.0

The result is as expected, the inner node is vibrating. A denser mesh will provide a much better representation
of the Eigenmode. It is important to bear in mind that a vibration is in two directions: in this case the
eigenmode is shown moving up, however half a period later it will be moving down.

Free vibration gives only the conception of structure properties and allows predicting the behaviour of the

structure under time varying load conditions. In nature, each body prefers to remain in a standstill. If forced to
move, it prefers the way requiring minimal energy consumption. These ways of motion are the eigenmodes.
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The eigenmodes do not represent the actual deformation of the structure. They only show deformation that is
"natural” for the structure. This is why the magnitudes of calculated displacements are dimensionless
numbers. The numbers provided are ortho-normed, i.e. they have a particular relation to the masses in the
structure. The absolute value of the individual numbers is not important. What matters is their mutual
proportion.

The vibration of the structure can be shown through by the main menu Result > Animation.
Activating the option « Symmetry » will show the actual vibration in both directions.

=) Animaticx a X

o 6 o Frames per second : 100 Mode of calculation : Linear v

Plav time (s) : 1l

1 Displacement of nodes
Values: Uz
Modal shapes are normalized, so that
the generalized modal mass of each
mode is equal
to 1kg.
Mass combination: CM1/1 - 6.32
Extreme: Global
Selection: All

} -42.0mm

IERRRALL T

Close

Note: using CTRL + right mouse button, the structure can be rotated in the “Animation” window.

Manual calculation

In order to check the results of SCIA Engineer, the eigen frequency of this structure is calculated by a manual

calculation.
Following reference [1], the circular frequency of a beam on two supports with a mass in the middle can be

calculated as follows:
2 _

w” = 48@
With:
circular frequency
modulus of Young
moment of inertia of the beam
length of the beam
mass in the middle of the beam

z=CTme

In this example:
E = 210000 N/mm?
ly = 19430000 mm*
L =6000 m
M = 500 kg
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So we have:

2 _ 48 x 210000 N/mmz * 19430000mm*

@ 500kg * (6000mm)3

o = 42,581ad/
f:

@ = 6,78 H
2n z

The result calculated by SCIA Engineer was 6,32 Hz.

= 181347724/,

The difference in results is caused by two assumptions in the manual calculation:

- The manual calculation does not take into account the self-weight of the beam.

Since w =

k/m, a lower mass will lead to a higher w and a higher f.

- The manual calculation does not take into account shear deformation.
A lower deformation leads to a higher stiffness k, a higher w and a higher f.

These two assumptions can also be implemented in the calculation model of SCIA Engineer:
- Inorder not to take the self-weight into account, the volumetric mass of S 235 can be set to 1 kg/m?in

the material library:

8 ' Materials

HFEIRGFE «» OA@B A

$235 Name
4 Code independent

Material type

Thermal expansion [m/mK]

X
vY

$235

Steel
0.01e-003

C

Unit mass [kg/m*"3]

1.00

E modulus [MPa]
Poisson coeff.
Independent G modulus
G modulus [MPa]
Log. decrement (non-uniform da
Colour
Thermal expansion (for fire resis
Specific heat [J/gK]
Thermal conductivity [W/mK]
Price per unit [€/kg]

« EC3
Ultimate strength [MPa]
Yield strength [MPa]

Thickness range

MJA — 2024/08/23

2.1000e+05
0.3

8.0769e+04
0.15
0.01e-003
6.0000e-01
4.5000e+01
1.00

360.0
235.0
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- To neglect the shear deformation, activate this option through the menu Tools / Calculation & Mesh
/ Solver settings:

B ° Solver setup X

Name SolverSetupl
Specify load cases for linear calculation
4 Advanced solver settings
4 General
Neglect shear force deformation ( Ay, Az >> A)
Neglect shear center eccentricity
Type of solver Direct v
Minimal number of sections on member 10
Warning when maximal translation is greater than [mm] 1000.0
Warning when maximal rotation is greater than [mrad] 100.0
P Initial stress
P Dynamics
P Soil

2d [y & OK Cancel

- To obtain a correct and precise result, the mesh must also be refined to 10 finite elements. This can
be done through the main menu Tools / Calculation & Mesh / Mesh settings.

8 Mesh setup X

Name MeshSetupl
[ Average number of 1D mesh elements on straight 1D members 10 ]

Average size of 1D mesh element on curved 1D members [m] 0.200

Average size of 2D mesh element [m] 1.000
Connect members/nodes
Setup for connection of structural entities
4 Advanced mech settinos

Now when the calculation is performed again, the following results are obtained :
Eigen frequencies

Mass combination : CM1
1 |e7s  |4258 [1813.32 [o.as

These results correspond exactly to the manual calculation.

This example clearly shows the importance of checking the assumptions behind the applied theories. When
comparing results between two calculations, always make sure the same assumptions/hypotheses are used.
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2.3 Frames

In this paragraph, the Free Vibration calculation is illustrated for frame structures. The principles of the theory

are applied in detail and verified by means of manual calculations.

Example 02-2.esa

5000

In this example, a two-storey frame is modelled. The members o
have cross-section HE240A and are manufactured in S 235
according to EC-EN.

4000
HEAZ240

The height of each storey is 4 m.
The width of the frame is 5 m.
The column bases are inputted as fixed supports. o

HEAZ40

HEAZ40

_HEAZ40

One static load case is created: self-weight.

4000
HEAZ40

On the beams of the floor and roof level, a line mass of 500 kg/m
will be introduced.

Step 1&2: functionality and mass group

HEAZ40

el

The activation of the Dynamics Functionality and the creation of a Mass Group are identical to the previous

example.

Step 3: masses

When the Mass Group is created, the line masses of 500 kg/m can be inputted on the roof and floor beams

of the frame.

# ' Line mass on beam

Name LMB3
Distribution Uniform
M [kg/m] 500.00

Koeff mx 1

Koeff my 1
M pa—Y Koeff mz 1

@ 4 Geometry
Extent full

Coord. definition Rela
Position x1 0.000
Position x2 1.000

Origin From start

=

x2

[

OK

MJA — 2024/08/23

Cancel
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500.00

=]
[=]
=]
=}
'3}

500.00

LMB1
500.00

P
[
t

Note: to render the display of masses, go to ”Set view parameters for all”’ / « Loads / masses ».
Step 4: mass matrix

Next, a Combination of Mass Groups can be created.

® ' Combinations of mass groups X
= -fEZHFE & 2 [ Inputcombinations vY
M1 \ Name CM1

Description

4 Contents of combination
MG1[] 1.00

New Insert Edit Delete Close

24 MJA — 2024/08/23



Step 5: mesh setup

To obtain precise results for the dynamics calculation, the Finite Element Mesh is refined.
This can be done through Calculation & Mesh / Mesh Settings.

8 Mesh setup X

Name MeshSetupl
[ Average number of 1D mesh elements on straight 1D members 10 ]

Average size of 1D mesh element on curved 1D members [m] 0.200

Average size of 2D mesh element [m] 1.000
Connect members/nodes
Setup for connection of structural entities
4 Advanced mesh settings
P General mesh settings
P 1D elements

of fllbd NUAENE

The Average number of tiles of 1D element is set to 10 to obtain a good distribution of the line masses and
the mass of the members.

Step 6: solver setup

The last step before launching the calculation is setting the amount of eigenmodes to be calculated. The default
value in the menu Tools / Calculation & Mesh / Solver Settings is 4. This is sufficient for this example.

' Solver setup X

Name SolverSetupl
Specify load cases for linear calculation
4 Advanced solver settings
P General
P Initial stress

4 Dynamics

Type of eigen value solver Lanczos v
[ Number of eigenmodes 4 ]
Modal mass matrix Diagonal v

Use IRS (Improved Reduced System) method
P Mass components in analysis
> Soil

o bdfd EERE
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Step 7: modal analysis

The Free Vibration calculation can now be executed through the main menu Tools / Calculation & Mesh /

Calculate.
The following results are obtained:

Eigen frequencies
N f © w? T
[Hz] [1/s] [1/s%] [s]

Mass combination : CM1

1 2.90 18.25 333.01 0.34
2 9.58 60.22 3626.53 0.10
3 1464 [51.55 8462.43 0.07
4 17.15 107.78 11615.85 0.06

As stated in the previous example, using Deformation of Nodes, the Deformed Mesh can be shown to view
the eigenmodes:

o L, [

Eigenmode 1: f = 2,90Hz Eigenmode 2: f = 9,58Hz

— 7

| N

I; X 4 I_’\ 4
Eigenmode 4: f = 17,15Hz

[

Eigenmode 3: f = 14,64Hz
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The Calculation Protocol for the Eigen Frequency calculation shows the following:

Sum of masses

Mass type X )i r4
[kg] [kg] [kg]
CM1 | Moving mass 6543.37 | 6567.49 | 654337

lcM1 |Totalmass | 6567.45 | 656743 | 6567.43 |
Raolatis A1
Mode ega [rad P?r;od l[:fﬁi. MNa My L ) W [Wizce Wy [Wyee Wai/Wxee u g /Wi v /Wyt 218/ Wzt
s, Hz

1 18.2451 0.34 2.90 75.1282 0.0000 0.0000 0.8626 0.0000 0.0000 0.0000 0.0805 0.0000
2 60.2224 0.10 9.58 | -26.9398 0.0000 0.0000 0.1109 0.0000 0.0000 0.0000 0.4202 0.0000
3 91.9542 0.07 1464 0.0000 0.0000 | -31.6956 0.0000 0.0000 0.1535 0.0000 0.0000 0.0000
4 107.78 0.06 17.15 0.0000 0.0000 | -55.3291 0.0000 0.0000 0.5379 0.0000 0.0000 0.0000
0.9735 0.0000 0.6515 0.0000 0.5007 0.0000

The Sum of masses shows the amount of mass, which can vibrate for this Mass combination. In this
example, this is governed by the line masses of 500 kg/m and the mass of the members.

This value can be calculated as follows:

- The members are of type HE240A with cross-section A= 0,00768 m?

- The volumetric mass of S 235 is 7850 kg/m?3

- The total length of the membersis4x4m+2x5m=26m

However, as stated in 2.2 the masses are guided to the mesh nodes. The Finite Element Mesh was refined

to 10 1D elements per member.

This implies that for the two lower columns, half the mass of a 1D element is guided to a support and does not

take part in the free vibration:

- The length of the columns is 4 m
- Thelengthofa1D elementisde4m/10=0,4 m
- The length of half a 1D elementis 0,4 m/2=0,2m

o The total length of the members taken into account for the mass is:

26m-02m-02m=256m

o Total member mass = 0,00768 m? x 25,6 m x 7850 kg/m?® = 1543,37 kg

The mass is added to the line masses of 500 kg/m

o Vibrating mass = 2 x 500 kg/m x 5m + 1543,37 kg = 6543,37 kg

The Modal Participation Factors show the amount of mass that is vibrating in a specific eigenmode as a

percentage of the total mass.

For Eigenmode 1: 86% of the total mass is vibrating in the X-direction
For Eigenmode 2: 11% of the total mass is vibrating in the X-direction
For Eigenmode 3: 16% of the total mass is vibrating in the Z-direction
For Eigenmode 4: 54% of the total mass is vibrating in the Z-direction

The lower row shows the total percentage when these four modes are combined: 97% is taken into account

for the X-direction and 69% for the Z-direction.

These factors will be looked upon in more detail during the Seismic calculations in Chapter 4. For a seismic
calculation, it is required that sufficient eigenmodes are included in the calculation so that at least 90% of the

total mass is being taken into account [7].

MJA — 2024/08/23
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Manual calculation

In order to check the results of SCIA Engineer, the lowest eigen frequency, or natural frequency of this
structure is calculated by a manual calculation.

The method used here is described in the literature as Rayleigh’s Energy Method. [1], [13].

In this method, the structure is idealized as a cantilever beam with lumped masses at each floor level:

The structure is then loaded with a set of linearly increasing horizontal loads on each floor level. Due to this
loading, the structure will deform and thus the rigidity of the system is known. The eigen frequency of the
structure can then be approximately calculated as follows:

fo 1 XL Fid
2T[. in=1 lvlldl2

With:
n: number of floors
Fi: horizontal force acting on floor level i
di: horizontal deformation of floor level i
Mi: idealized mass of floor level i

The analogy between this formula and w = ,/k/m can clearly be seen.

To use this formula, the frame needs to be idealized to a cantilever:

_,...-/-’""—H’

—
B O
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The mass of the lower part of the structure is idealized to the support of the cantilever so it takes no part in
the vibration.
The mass M1 can be calculated as follows:
0,00768 m2 x (5 + 4 + 4) m x 7850 kg/m?® + 500 kg/m x 5 m = 3283,74 kg
The mass Mzcan be calculated as follows:
0,00768 m2 x (5 + 4) m x 7850 kg/m3 + 50 kg/m x 5 m = 3042,59 kg

In order to calculate the horizontal deformations di of each floor level due to a linearly increasing load Fi, a
static load case is calculated with SCIA Engineer consisting of loads of 100 kN and 200 kN. The following
results are obtained for the nodal deformations:

T Y- I = |J_x = 197.4 mm
i S R U_x=947mm

M

II! ;’_\-::{Dmm ==l _w = 0.0mm

o Fi1=100kN =100000 N =>d1 =94,7 mm =0,0947 m
o F2=200kN =200000 N =>d2=197,4 mm =0,1974 m

Applying formula (2.8):

= 2,88 Hz

2n" |3283,74kg * (0,0947)2 + 3042,59g * (0,1974m)?

1 \/ 100000N * 0,0947m + 200000N * 0,1974m
Ton

This result corresponds to the 2,90 Hz calculated by SCIA Engineer.
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2.4 Combining mass groups

Mass Groups are combined in a Combination of Mass Groups.

According to Eurocode 8 [7] article 3.2.4, all gravity loads appearing in the following combination of actions
need to be taken into account for an eigenmode calculation:

Z Gy + Z g Qi
Where:

Gi: characteristic value of the permanent load
Qx,j: characteristic value of the variable load i
Yg;: combination coefficient for load i = .y,

The combination coefficient Y ; takes into account the likelihood of the variable loads not being present over
the entire structure during the occurrence of an earthquake.

According to Eurocode 8 [7] article 4.2.4, Yg; should be calculated in the following way:
Ygi = @. Yy

NOTE The values to be ascribed to @ for use in a country may be found in its National Annex.
I'he recommended values for ¢ are listed in Table 4.2.

Table 4.2: Values of ¢ for calculating 4

Type of variable Storey »

action

Categories A-C” Roof 1.0
Storeys with correlated occupancies 0.8
Independently occupied storeys 0,5

Categories D-F’

and Archives .l

* Categories as defined in EN 1991-1-1:2002.

For example, if a first mass group MG1 represents the mass of permanent loads and a second mass group
MG2 represents the mass of a variable load case with a Category B imposed load and independently occupied

storeys, then @ is taken as 0,5 and J, ; as 0,3.
This gives a value of 0,15 for Y ;.
The Combination of Mass Groups CM1 can then be formulated as 1,00 MG1 + 0,15 MG2.

¥ ° Combinations of mass groups X
‘ = fEZMFE &« 2 [ Inputcombinations vY
M1 Name CM1
Description

4« Contents of combination
MG1[-] 1.000
MG2 [-] 0.150

New Insert Edit Delete Close
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Example 02-3.esa

In this example an office building is modelled as a frame. The office is manufactured in C30/37 according to
EC-EN. The building has four storeys with a storey height of 4 m. In horizontal direction, the frame is made up
of four columns with a distance of 6 m between them. In the direction out of plane, the frames are spaced

5 m. The column bases are inputted as fixed supports.

The members of the frame have following cross-sections:
- Columns: Rectangular 300 x 450
- Floor Beams: Rectangular 250 x 500
- Roof Beams: Rectangular 150 x 300

The vertical loads acting on the structure are:
- The self-weight of the concrete members
- The weight of the floors: 5 kN/m?
- The weight of the roof: 2 kN/m?
- A category B (Office) imposed load of 3 kN/m?

This gives 3 static load cases:
- LC1: self-weight

- LC2: permanent load: 25 kN/m on the floor beams, 10 kN/m on the roof beams

- LCS3: variable load: 15 kN/m on the floor beams

MJA —2024/08/23
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Step 1: functionality

The first step in the Dynamic calculation is to activate the functionality Dynamics on the Functionality tab in
the Project Data.

Step 2 & 3: mass groups
The second step is to create Mass Groups, the third step the creation of Masses.
Three Mass Groups are created, one for the dead load and one for each static load case.

For the Mass Group MGZ2, the load case LC2 is chosen: the weight of the floors and roof. Using the action
“Create masses from load case”, you can automatically generate masses from the already inputted loads
which remain linked to the loads.

B Mass groups X

i RFE a2 O8O A vY

MG1 Name MG2

il Description

e Bound to load case Yes v
Load case Perm_add -Perm_add AN

Keep masses up-to-date with loads LJ

Actions
Create masses from load case >>>
Delete all masses >>>
New Insert Edit Delete Close

In the same way, the Mass Group MG2 is created in which masses are automatically created from load case
LC3: the imposed load.

B " Mass groups X
= fRFE a2 O B0 A vY
MG1 Name MG3
i Description
il Bound to load case Yes v
Load case LL-LL v e
Keep masses up-to-date with loads j

Actions
Create masses from load case >>>
Delete all masses >>>
New Insert Edit Delete Close
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Note:

As stated in the first example: When creating masses from loads, SCIA Engineer will use the acceleration of
gravity specified on the Loads tab of the Project Data. By default it is 9,81 m/s2.

The mass, which has been created from a load case, can be automatically regenerated when the load case is
modified. To link the mass to a load case, you have to activate the option “Keep masses up-to-date with
loads™.

The contain of the two mass groups can be visualized.

Mass group MG2:
= ¢ 88 ¢ 88 ¢ =
N
L«
Floor mass: N
% = 25484 X8/
Roof mass: y
% = 1019,4 X8/,
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Mass groups MG3:

1529.05
1529.05
1529.05

LMB15

1525.05
LMB20
1529.05
1523.05
LMET4
1529.05

1529.05
1529.05
1529.05
1529.05

LMB19
LMB13

Loy

Mass of imposed load:
15000 N/jpy K
o /m g
9,811/, 15291 %/m

Step 4: mass matrix

Both Mass Groups can now be combined in a Combination of Mass Groups.
According to Eurocode 8 [7] article 3.2.4, all gravity loads appearing in the following combination of actions
need to be taken into account for an eigenmode calculation:

Z Gy + Z Vg Qi

(2.9)
With:
Gk: characteristic value of the permanent load
Quj: characteristic value of the variable load i
Yg;:  combination coefficient for load i = @. s, ;

The combination coefficient yiz; consider the probability that variable loads may not be present on the whole
structure when the earthquake happens.

For this example, with a Category B imposed load and independently occupied storeys, ¢ is taken as 0,5 and
W2, as 0,3. This gives a value of 0,15 for We;
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The Combination of Mass Groups CM1 can then be formulated as 1,00 MG1 + 0,15 MG2.

‘ # ' Combinations of mass groups X
= -fiEZFE &« 2 [ Inputcombinations vY
CM1 Name CM1
Description

4 Contents of combination
MG1[] 1.000
MG2 [-] 1.000
MG3 [-] 0.150

New Insert Edit Delete Close

Step 5: mesh setup

To obtain precise results for the dynamics calculation, the Finite Element Mesh is refined. This can be done
through the main menu Tools / Calculation & Mesh / Mesh settings.

8" Mesh setup X

Name MeshSetupl
( Average number of 1D mesh elements on straight 1D members 10 )

Average size of 1D mesh element on curved 1D members [m] 0-200

Average size of 2D mesh element [m] 1.000
Connect members/nodes
Setup for connection of structural entities
4 Advanced mesh settings
4 General mesh settings
Minimal distance between definition point and line [m] 0.001
Definition of mesh element size for panels Manual v
Average size of panel element [m] 1.000
Elastic mesh
Use automatic mesh refinement
4 1D elements
Minimal length of beam element [m] 0.100
Maximal length of beam element [m] 1000.000
Average size of tendons, elements on subsoil, nonlinear soil spring [m] 1.000

Generation of nodes in connections of beam elements

Y i e Tt el Pl 8 P A O i im el el S ol e

R

The Average number of tiles of 1D element is set to 10 to obtain a good distribution of the line masses and
the mass of the members.
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Step 6: solver setup

The last step before launching the calculation is setting the amount of eigenmodes to be calculated. The default
value in the main menu Tools / Calculation & Mesh / Solver Settings is 4. This is sufficient for this example.

v v v

[N

~

P Mass c

Solver setup

Name SolverSetupl

Specify load cases for linear calculation

Specify combinations for linear stability calculation

Specify combinations for nonlinear stability calculation

General
Nonlinearity
Initial stress

Dynamics

4 Advanced solver settings

N
s in anal

(

e

Type of eigen value solver Lanczos

Number of eigenmodes 4

Modal mass matrix Diagonal

Use IRS (Improved Reduced System) method

X

B'E& & OK Cancel

Step 7: calculation

The Free Vibration calculation can now be executed through the main menu Tools / Calculation & Mesh /

Calculate.

The following results are obtained:

With corresponding eigenmodes:

Eigen frequencies
Mass combination : CM1
1 1.27 7.99 63.80 0.79
2 3.69 23.19 537.79 0.27
3 5.99 37.64 1417.01 0.17
4 8.23 51.73 2676.16 0.12

|

36

Eigenmode 1: f=1,27 Hz

Eigenmode 2: f = 3,69 Hz
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Ny / N
[ I x

Eigenmode 3: f = 5,99 Hz Eigenmode 4: f = 8,23 Hz

Step 8: calculation protocol

The Calculation Protocol for the Eigen Frequency calculation shows the following:

Sum of masses

Mass type X Y 7 4
[kg] [kg] [kg]
CM1 | Moving mass 208578.65 | 208848.65 208578.65

lcM1 | Total mass | 208848.65| 208848.65 | 208848.65 |
Relati 2
Mode iega [rad PE";*’ ‘["Nq]- M v Tz Wx/Wiae Wy/Wye Wa/Wae ur/Wie vr/Wyoe 2x/Wza
s Hz

1] 73874 0.79 1.27 | 417.2609 0.0000 0.0000 0.8347 | 0.0000 0.0000 0.0000 0.0543 0.0000
2| 23.1508 0.27 3.65 | -142.8630 0.0000 0.0000 0.0573 0.0000 0.0000 0.0000 0.2151 0.0000
3| 37.6444 0.17 535 | s3.8s42 0.0000 0.0000 0.0422 0.0000 0.0000 0.0000 0.0466 0.0000
4| 517331 0.12 8.23 0.0000 0.0000 | 15.9525 0.0000 0.0000 0.0015 0.0000 0.0000 0.0000
0.9748 0.0000 0.0015 0.0000 0.3165 0.0000

The Sum of masses can be calculated as follows:
- According to the Bill of Material, the self-weight of the frame, is 40500 kg:

Bill of material

Selection: All

Material | Mass Surface Volume
[kg] [m?] [m3]

Concrete 40500.00 193.200 | 1.6200e+01

Total 40500.00 193.200| 1.6200e+01

However, for the four lower columns, half the mass of a 1D element is guided to a support and does
not take part in the free vibration.
- The length of the columns is 4 m
- Since 10 1D elements per member were used, the length of a 1D elementis4 m/10=0,4 m
- The length of half a 1D elementis 0,4 m/2=0,2m
- The columns have a cross-section of 0,135 m? and a volumetric masse of 2500 kg/m?
o The mass of the columns not taken into account is:
4x 0,135 m2x 0,2 m x 2500 kg/m3 = 270 kg
o The mass of the self-weight taken into account is: 40500 kg — 270 kg = 40230 kg
- For MG1 the mass of the floors is 9 x 2548,42 kg/m x 6 m = 137614,68 kg
- For MG1 the mass of the roof is 3 x 1019,37 kg/m x 6 m = 18348,66 kg
- For MG2 the mass of the floors is 9 x 1529,05 kg/m x 6 m = 82568,7 kg
However only 15% was taken into account => 0,15 x 82568,7 kg = 12385,31 kg
- Vibrating mass = 40230 kg + 137614,68 kg + 18348,66 kg + 12385,31 kg
= 208578,65 kg
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Manual calculation

In order to check the results of SCIA Engineer, the lowest eigen frequency of this structure is calculated by
means of the Rayleigh Method.
As specified in the previous example, the frame is idealized as a cantilever:

]

MRS

The masses M1, M2 and Ms can be calculated as follows:

Self-weight of the three floor beams and four columns:
o 3x0,125 m2x 2500 kg/m® x 6 m = 5625 kg
o 4x0,135 m2x 2500 kg/m? x 4 m = 5400 kg
o 5625 kg + 5400 kg = 11025 kg

- Floor weight of mass group MG1:
o 3x2548,42 kg/m x 6 m = 45871,56 kg

- Weight of imposed load of mass group MG2 (15%)
o 0,15x 3 x 1529,05 kg/m x 6 m = 4128,44 kg

- Total: 11025 kg + 45871,56 kg + 4128,44 kg = 61024,995 kg
The mass M, can be calculated as follows:
- Self-weight of three roof beams and half of four columns:
o 3x0,045 m2x 2500 kg/m3 x 6m = 2025 kg
o 0,5x4x0,135 m2 x 2500 kg/m® x 4m = 2700 kg
o 2025Kkg + 2700 kg = 4725 kg

- Roof weight of mass group MG1:
o 3x1019,37 kg/m x 6 m = 18348,66 kg

- Total: 4725 kg + 18348,66 kg = 23073,66 kg

In order to calculate the horizontal deformations di of each floor level due to a linearly increasing load Fi, a
static load case is calculated with SCIA Engineer consisting of loads of 100 kN, 200 kN, 300 kN and 400 kN.
The following results are obtained for the nodal deformations:
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]l.:l_></=:ﬂ:0 mm U_x=0.0mm U_x=00mm U_x=00mm

F1 =100 kN = 100000 N =>d1 =32,3 mm=0,0323 m
F2 =200 kN = 200000 N =>d2=76,0 mm =0,0760 m
F2 =300 kN = 300000 N =>d2=113,1mm=0,1131m
F2 =400 kN = 400000 N =>d2=148,0 mm =0,1480 m

O O O O

Applying formula (2.8):

fo 1 100000N * 0,0323m + 200000N * 0,076m + 300000N * 0,1131m + 400000N * 0,148m
T2m 61024,99kg - (0,032)2 + 61024,99kg - (0,076m)? + 61024,99kg - (0; 113m)2 + 23073,66kg - (0,148m)>
f=1,27 Hz

this result corresponds to the 1,27 Hz calculated by SCIA Engineer.
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2.5 Slabs

The last paragraph of this chapter illustrates the procedure for the Free Vibration calculation of slabs. The
applied method is entirely the same as for frames. This is shown in the following example.

Example 02-4.esa

In this example, a multi-span rectangular slab is modelled. The slab has a length and width of 6 m. The slab
has a thickness of 0,06 m and is manufactured in S 235 according to EC-EN. On two sides the slab is simply
supported, on the other two, the slab is free. In the middle of the slab, perpendicular on both simply supported
edges, a line support is introduced.

One static load case is created: the self-weight of the slab.

Step 1: functionality

The first step in the Dynamic calculation is to activate the functionality Dynamics on the Functionality tab in
the Project Data.

Step 2 & 3: mass group

The second step is to create a Mass Group

B Mass groups %
FEEfRFE «a2 O@OQ0 A v Y
MG1 Name MG1
Description
Bound to load case Yes v
Load case LC1-Self weight v o

Keep masses up-to-date with loads

Actions
Create masses from load case >>>
Delete all masses >>>
New Insert Edit Delete Close

Since the Free Vibration calculation will be executed for the self-weight of the slab, no additional masses need
to be inputted.
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Step 4: mass matrix

Next, a Combination of Mass Groups can be created.

# ' Combinations of mass groups X
= f[AEME & 2 [0 Inputcombinations vY
M1 Name CM1

Description

4« Contents of combination
MG1 [-] 1.000

New Insert Edit Delete Close

Step 5: mesh setup

To obtain precise results for the dynamics calculation, the Finite Element Mesh is refined. Analogous as for
frames, this can be done through the main menu Tools / Calculation & Mesh / Mesh settings.

8 Mesh setup X

Name MeshSetupl
Average number of 1D mesh elements on straight 1D members 1
Average size of 1D mesh element on curved 1D members [m] 0.200
[ Average size of 2D mesh element [m] 0.250 ]
Connect members/nodes

Setup for connection of structural entities

4 Advanced mesh settings
4 General mesh settings
Minimal distance between definition point and line [m] 0.001
Definition of mesh element size for panels Manual \7
Average size of panel element [m] 1.000
Elastic mesh
Use automatic mesh refinement

4 1D elements

R L

The Average size of 2D elements is set to 0,25 m.
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Step 6: solver setup

The last step before launching the calculation is setting the amount of eigenmodes to be calculated. The default
value in the main menu Tools / Calculation & Mesh / Solver settings is 4. This is sufficient for this example.

B Solver setup X

Specify combinations for linear stability calculation

4 Advanced solver settings

P General
P Effective width of plate ribs
P Nonlinearity
P Initial stress
4 Dynamics

Type of eigen value solver Lanczos v

( Number of eigenmodes 4 )
Modal mass matrix Diagonal v

Use IRS (Improved Reduced System) method
P Mass components in analysis
P Linear stability

P Soil
B & 8{ OK Cancel

Step 7: modal analysis

The Free Vibration calculation can now be executed through the main menu Tools / Calculation & Mesh /
Calculate.

The following results are obtained:

Eigen frequencies

N f Y w? T
[Hz]  [1/s] [1/s7] [s]

Mass combination : CM1

1 6.68 41.54 1755.34 0.15

2 9.43 £9.24 3505.65 0.11

3 19.37 121.72 14815.37 0.05

Bl 21.00 131.96 17412.72 0.05

The same way as for frames, the Eigenmodes can be visualized through Deformation of nodes now under
2D Members. The Deformed structure for value Uz shows the following:

Eigenmode 1: f = 6,68Hz Eigenmode 2: f = 9,43Hz
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Eigenmode 3: f = 19,37Hz Eigenmode 4: f = 21,00Hz

Notes:

- With the option Displacement 3D, you display the deformation of both 2D and 1D elements. This allows
seeing the complete eigenmode for a structure containing both element types i.e. General XYZ projects.

- To generate all eigenmodes quickly, this document can be used: the picture of one eigenmode can be set
as a nested table for the Combinations of Mass Groups :

A 3] EIGEN FREQUENCIES
B e 7 R R Mo & & @
D
¥ RESULT CASE
Typeof load Mass combinations v
Mass combination CM1/1-6.68 v

This way, all eigenmodes are generated automatically.

Step 8: calculation protocol

The Calculation Protocol for the Eigen Frequency calculation shows that the following “Sum of masses” is

accounted for:
Sum of masses

Mass type X Y z

L)) [kg] [kg]
CM1 | Moving mass 16956.00 | 16956.00| 15572.44
CM1 |Total mass 16956.00 | 16956.00| 16956.00

This value can be calculated as follows:
- The total weight of the slabs is 6 m x 6 m x 0,06 m x 7850 kg/m?3 = 16956 kg
- Half of the mass of the elements near the two externally supported edges is carried to the supports
and does not participate in the vibration. Since the mesh size was set to 0,25 m, half the size of a 2D
element is 0,125 m.
o 2x6mx0,125m x 0,06 m x 7850 kg/m3 = 706,5 kg
- The same applies for the internal edge, however the mass of the two elements on the start and end
nodes has already been taken into account in the above calculation for the externally supported edges.
This leaves a length of 6 m - 0,125 m - 0,125 m = 5,75 m.
The following figure illustrates this length:
o 2x5,75mx0,125m x 0,06 m x 7850 kg/m?® = 677,06 kg
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- The total mass taken into account for the « Free Vibration » calculation is:
o 16956 kg — 706,5 — 677,06 = 15572,44 kg

Manual calculation

In order to check the results of SCIA Engineer, the eigen frequencies of the slab are calculated by a manual
calculation.

The method used here is described in reference [14] In this reference; the eigen frequency of a multi-span slab
is expressed in terms of a non-dimensional parameter

wL? h
ey
T D

(2.10)
Where:
w: circular frequency
L: distance between the two simply supported external edges
p: density of the slab material
h: slab thickness
D: flexural rigidity of the slab
b= Eh3
S 12.(1-v?)

(2.11)
E: modulus of Young
v: Poisson’s ratio
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In this example, the material properties are the following:
L=6m
p = 7850 kg/m3
h=0,06 m
E = 210000 N/mm2 = 2,1.e'" N/m2
v=0,3
(2,1e11 N/mZ) x (0,06m)?

D —
12 (1-0,3%)

= 4153846,15N.m

The values for A for the first four modes, for a slab with two edges simply supported and two edges free, a h/L
ratio of 0,01 and an internal edge on position 0,5L are given in reference [14]:

Mode 1: A = 1,6309
Mode 2: A = 2,3050
Mode 3: A = 4,7253
Mode 4: A = 5,1271

Using these parameters in formula (2.10), the circular frequencies can be calculated:

Mode 1: w = 41,99rad/s =>f=6,68Hz
Mode 2: w = 59,34rad/s =>f=9,45Hz
Mode 3: w = 121,66rad/s =>f=19,36Hz
Mode 4: w = 132rad/s =>f=21,01Hz

The results correspond perfectly to the results calculated by SCIA Engineer:

Mode 1:f = 6,68Hz
Mode 2: f = 9,44Hz
Mode 3: f = 19,39Hz
Mode 4: f = 21,05Hz
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Chapter 3: SPECTRAL ANALYSIS - SEISMIC LOAD

In this chapter, the seismic analysis in SCIA Engineer is explained in detail.

During an earthquake, the subsoil bearing a structure moves. The structure tries to follow this movement and
as a result, the masses in the structure begin to move. Subsequently, these masses subject the structure to
inertial forces. When these forces are determined, they can be applied to the structure and thus, like with the
harmonic load, the dynamic calculation is transformed to an equivalent static.

In the first part of the chapter, the theory will be explained. The theory will then be illustrated by examples,
which are again verified by manual calculations.

3.1.  Theory

4+ General

Analogous to the previous chapters, before examining the dynamic analysis of a complex structure, the
Seismic analysis of a SDOF (Single Degree Of Freedom) system is regarded in detail. A complete overview
can be found in references [2], [3].

Generally, this paragraph deals with the analysis of structures that are submitted to a harmonic ground motion.
The most important harmonic ground motions are earthquakes (seismic loads), but this calculation method
can also be applied to the analysis of underground or surface explosions and vibrations generated by heavy
traffic or machinery.

The following figure illustrates the displacement of a system that is submitted to a ground motion:
y(t)
|

u(t)
——
B
¥qlt)
Where:

yg(t) is the ground displacement

y(1) is the total displacement of the mass

u(t) is the relative displacement of the mass

The total displacement can thus be expressed as follows:
y(®) = yg() +u(t)

Since yq is assumed to be harmonic, it can be written as:
yg(t) = Yg.sin (v.0)

The equilibrium equation of motion can now be written as:
m.y(t) + c.ut) + ku®) =0
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Since the inertia force is related to the total displacement (y) of the mass and the damping and spring reactions
are related to the relative displacements (u) of the mass.

When (4.1) is substituted in (4.3), the following is obtained:

m. (ii(t) + y"g(t)) +eul) +ku®) =0
or
m.ii(t) + c.u(t) + k.u(t) = —m.y,4(t)
(4.4)

This equation is known as the General Seismic Equation of Motion. This equation can be used to illustrate
the behaviour of structures that are loaded with a seismic load.

Substituting (4.2) in (4.4) gives the following:
m. (1) + c.u(t) + k.u(t) = —m.Y,. v sin (v.t)

This equation can be compared with equation (3.2) of the previous chapter. As a conclusion, the ground motion
can also be replaced by an external harmonic force with amplitude:
F=-m.Y,.v?

But an earthquake will be a combination of many harmonic loads acting on different frequencies
simultaneously. The load represented in these harmonic loads is the acceleration of the structure multiplied
with the mass of the structure. The frequencies of these harmonic loads are the frequencies on which this
acceleration occurs in the earthquake.

The combination of all the accelerations over the different frequencies in the earthquake will be given by a
response spectrum. A response spectrum is therefore nothing more than a list of accelerations and the
frequencies on which they occur.

L+ Response spectra

When a structure has to be designed for earthquakes, in most cases spectral analysis is used because the
earthquake loading is often described as a response spectrum. This response spectrum can either be a
displacement, velocity or acceleration spectrum.

The relation of an earthquake (given by an acceleration time-history) and the corresponding displacement
response spectrum is given by [16]:

S4(E w) = é [ j ¥g(). e~ sin(w. (T - 1)).dt

max

(4.5)
Where:
yg(T): the ground acceleration in function of time
& the damping factor
T: the period 2m/w

Instead of the displacement response spectrum Sq, also the velocity response spectrum Svor the acceleration
response spectrum Sacan be used. These three spectra are related by w:
S, =w.S, = w?.sq

(4.6)
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In Eurocode 8 [7] the earthquake motion at a given point on the surface is represented by an elastic ground
acceleration response spectrum or “Elastic Response Spectrum Se” This spectrum is illustrated in the
following figure:

:."\\'vl

A commonly used way of describing an earthquake magnitude is the so-called Richter scale. Annex A gives
a relation between the magnitude on the Richter scale and the Peak Ground Acceleration.

+ Spectral analysis

For MDOF (Multiple Degree Of Freedom) systems, equation (4.4) can be written in matrix notation as a set of
coupled differential equations:
M.U+C.U+KU=-M{}.Y,
(4.7)

The matrix {1} is used to indicate the direction of the earthquake. For example, for a two-dimensional structure
(three degrees of freedom) with an earthquake that acts in the x-direction, the matrix is a sequence like
{1,0,0,1,0,0,1,0,0,...}.

The resulting set of coupled differential equations is reduced to a set of uncoupled differential equation by a
transformation U = Z.Q, where Z is a subset of @ (the eigenvectors) and Q is a vector, which is time-dependent.
M.Z.Q+CZQ+KZQ=-M{}.Y,

Or
ZTM.Z.Q+2Z7.C.Z.Q+Z".KZ.Q=-Z".M.{I}.Y,

This can be simplified to a set of uncoupled differential equations:
Q+C.Q+02Q=-Z""M.{1}.Y,

(4.8)
where C’ is a diagonal matrix containing terms like 2. w;.§;
Each equation j has a solution of the form:
1 (.
.= 7T _ —5wi(T-1) i . _
Q; Z" .M. {1}.(1).}0 Yq (). e .sin (oo]. (T r)) .dt
(4.9)

To obtain the maximum displacements, the displacement response spectrum Sd of equation (4.5) can be
substituted:
Qjmax = —Z". M.{1}.S4 (Ej; wj)

(4.10)

And:

Ujmax = —Z.Z". M. {1}. S4(§;, ;)
Or
Ujmax = —Z.W.S4(§;, ;)

(4.11)

Where W: modal participation factor:

y=z"M.{}

MJA —2024/08/23 49



Advanced Training — Dynamics

3.2.  Seismic load in SCIA Engineer

+ Response spectra

In SCIA Engineer, a Seismic Load can be inputted after creating a Combination of Mass Groups. This implies
that the steps used to perform a Free Vibration calculation still apply here and are expanded by the properties
of the Seismic Load.

As specified in the theory, Eurocode 8 [7] specifies an Elastic Response Spectrum Se. For design purposes,
this spectrum is reduced to a Design Spectrum Sd. This Design Spectrum is dependent on several
parameters: the Ground Type, the Ground Acceleration, the Behaviour Factor and the Damping.

When defining a spectrum in SCIA Engineer, the spectrum can be defined either by combinations of
Frequencies & accelerations, or Periods & accelerations, or by simply inputting the parameters that define this
spectrum according to Eurocode 8. If the user wishes to compose the spectrum based on the parameters in
Eurocode 8, then he will have the next input window:

8" Code parameters X

coeff accel. ag 0.015

ag - design acceleration [m/s*: 0.150
q - behaviour factor 1.500
st beta 0.200
- | Subsoil type A v = =
Spectrum type type 2 v
Direction Horizontal v
Frequency[Hz] . :
Direction factor 1
L Fst
S - soil factor 1.000 I
2 o2 Tb 0.050 Period v
3 0.25 - G
4 0.25 EN 1998-1:2004 - Eurocode v
’ Td 1.200 f
=
5 0.25 B .
6 0.25 OK Cancel
7 0.25 e vive -
: o e e Code parameters
9 0.26 3.91 0.03
10 0.26 3.90 0.03

OK Cancel

For a detailed description of these parameters, reference is made to Eurocode 8 [7]. The following is a brief
overview for understanding the input needed for SCIA Engineer.

- Damping: The Design Spectra of Eurocode 8 are defined for a damping ratio of 5%. If the structure
has another damping ratio, the spectrum has to be adapted with a damping correction factor n. This will be
looked upon in more detail in Chapter 11.

- Ground acceleration: The ground acceleration ag or the coefficient of acceleration a can be
calculated by means of an importance factor.
= The ground acceleration ag can be calculated from the importance factor and the peak ground
acceleration (PGA) ag::
dg = Y1 * Agr

(4.12)
= The coefficient of acceleration «a is defined as the ground acceleration divided by the acceleration
of gravity g:
ag
a=—
g
(4.13)
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= The importance factor is derived from the return period of the seismic action and the importance of
the structure. An importance factor y; equal to 1 is assigned to the reference return period.
= The peak ground acceleration (PGA) a4 can be found from the seismic zones in which a country is
divided. By definition, the seismic hazard within each zone is assumed to be constant. The hazard is
described by a single parameter: the peak ground acceleration (PGA) agr. The following figure
illustrates the division in seismic zones for the map of Belgium [9]:
EC8 Zonation 2011

0()
1 (0.40 m/s?)

2(0.60 m/s?)
3(0.80 m/s?)
B 4(1.00 nvs?)

Zones 0 1 2 3 4

Agr (for A
ground) in m/s?

/ 0,39 0,59 0,78 0,98

- Behaviour factor (EN1998, 3.2.2.5): To avoid explicit inelastic structural analysis in design, the
capacity of the structure to dissipate energy, mainly through ductile behaviour of its elements, is taken into
account by performing an elastic analysis based on a response spectrum reduced with respect to the elastic
one. This reduction is accomplished by introducing the behaviour factor q.
= For the vertical component of the seismic action a behaviour factor q up to 1,5 should generally be
adopted for all materials and structural systems. The adoption of values of q greater than 1,5 in the
vertical direction should be justified through proper analysis.
= The values of the behaviour factor q, which also account for the influence of the viscous damping
being different from 5%, are given for various materials and structural systems according to the
relevant ductility classes in the various Parts of EN 1998. The value of the behaviour factor g may be
different in different horizontal directions of the structure, although the ductility classification shall be
the same in all directions.

- Beta (B): the coefficient corresponds to the lowest limit (asymptote) for the horizontal design spectrum.
The recommended value for (B) is 0,2 but can be overruled by the relevant national annex.
If you plot the spectrum as acceleration to frequency, then the most left value would be the lower

bound factor 3 multiplied with the ground acceleration.
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Seismic spectrum

B " Code parameters X

coeff accel. ag 0.015

m/s? ag - design acceleration [m/s"
020 q - behaviour factor 1.500
beta
S, Tb, Tc, Td manually? No v
Subsoil type A v
Spectrum type type 2 v
Direction Horizontal v

Direction factor 1
< 2 B S - soil factor 1.000
B * a;=0,2+0, 15 = 0,30Hz Tb 0.050

.....

I

- S, Ty, T¢, Ta manually?: If you set this to “No”, then the values to compose the spectrum are calculated
automatically from the other properties in this window.

- Ground type: the Ground Type is dependent on the soil characteristics and is specified by letters A
to E.

Ground | Description of stratigraphic profile Parameters
type

ve30 (MSS) [ Ngpy ¢, (kPa)
(blows/30cm)

A Rock or other rock-like geological > 800
formation, including at most 5 m of
weaker material at the surface.

B Deposits of very dense sand, gravel, or | 360 - 800 [~ 50
very stiff clay, at least several tens of
metres in thickness, characterised by a
gradual increase of mechanical
properties with depth.

C Deep deposits of dense or medium- 180 -360 |15-350 70 - 250
dense sand, gravel or stiff clay with
thickness from several tens to many
hundreds of metres.

D Deposits of loose-to-medium <180 <15 <70
cohesionless soil (with or without some
soft cohesive layers), or of
predominantly sofi-to-firm cohesive
soil.

v

[S]
w
<

E A soil profile consisting of a surface
alluvium layer with v, values of type C
or D and thickness varying between
about 5 m and 20 m, underlain by
stiffer material with v, > 800 m/s.

- Type of spectrum: If the earthquakes that contribute most to the seismic hazard defined for the site
for the purpose of probabilistic hazard assessment have a surface-wave magnitude, Ms, not greater than 5,5,
it is recommended that the Type 2 spectrum is adopted. A simple formula to find the surface wave magnitude
from the Richter magnitude scale ([29]) is:
Ms =-3,2 + 1,45.ML
(4.14)

- Direction: If the spectrum is applied in X or Y direction, then this must be set to ‘Horizontal’. If the
spectrum is to be applied in the Z direction, then this property must be set to ‘Vertical'.
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+ Calculation protocol

In the calculation protocol of SCIA Engineer the intermediate results that were determined while calculating
the global effect of a spectral loading can be found.

This paragraph describes the formulas that have been used to determine those intermediate results.

Natural circular frequency and modal shape

Mass matrix

[M]p

Mass vector

{m}=[M], {1}

Natural circular frequency of
mode shape j

)

Natural normalized modal

(B Avec {g}(, M 1, Q@) ;, =M ;, =1

shape

Total mass in k" direction M, ot

Acceleration response S . .
ak,(J)

spectrum

Direction k

Total number of directions NK

Participation factor of the mode shape j in direction k

Participation factor

Ve = {@;4 Um} ={@}T Q)
(@2

Effective mass

— 2 —_ 2
Moy = Vi My = Vi

Participation mass ratio

- Mk,Ef,(j)

Lk,(j) - M

k tot
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Mode coefficient for mode j

Mode coefficient in ki G . = Saii Wi
direction k(1) ,
(J)
NK
. Sak(j) D/k,(j)
Total mode coefficient G . =k
) 2

Response of mode shape |

{ur) =G, Hal)

{uck) = Gy Ui

{u}) =) G, Qg

(i} ) = WG, QA Yy = Sarip Ty B8 )

Lateral force in node i for k =
direction Fikiy = Misiiy LSarin Wiy Hinii

Displacement

Acceleration

Fe i) :ZE,I(.(/’) ={ii )i Amy =S,y i B, Om)

Shear force in direction k '
_ 2

Fk,(/') - Sa,k,(j) l:yk,(/')

Overturning moment in node =
ifordirectign k Mi’k’(j) M [Sa’k’(j) [yk’(/) [%’k’(” [Zi

M, = Z M= Z (mi.k oo P By [k,)

Overturning moment in
direction k —
Mk,(/) - Sa,k,(/) Eyk,(/) Dz (mi,k ik.(]) DZ,)

i

The calculation of these parameters will be illustrated with an example further in this chapter.
+ Modal combination methods

Modal combination methods are used to calculate the response R of a seismic analysis. The term "response”
(R) refers to the results obtained by a seismic analysis, i.e. displacements, velocities, accelerations, member
forces and stresses.

Because the differential equations were uncoupled, a result will be obtained for each mode j.

To obtain the global response Rt of the structure, the individual modal responses R() have to be combined.
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The modal combination methods that are used in SCIA Engineer are:
- SRSS method (Square Root of Sum of Squares)

N
Riot = z R%j)
j=1

Where R() the response of mode j.
- CQC method (Complete Quadratic Combination)

N N
Riot = Z Z Ry pij- Rgj

i=1 j=1

Where:
R, R the response of mode i and |
pi;- modal cross correlation coefficients

(1 =122 + 4.55r(1 +17) + 4. (8 + ). r?

Pij =

]

w;

&, §: damping ratio for mode i and j

This method is based on both modal frequency and modal damping. The CQC-method thus
requires the input of additional data: a Damping Spectrum to define the damping ratio for each
mode.
In many cases however, there is no procedure to calculate the damping ratio for the higher modes.
Most of the time, the same damping ratio is then used for all modes [17].

- MAX method

N
— 2 2
Reot = [Riyax) T z R
=1

where:
R the response of mode j.
R(max) the maximum response of all modes.

Eurocode 8 [7] prescribes the SRSS-method. However this method may only be applied if all relevant modal
responses are independent of each other. This is met if the period of mode j is smaller or equal to 90% of the
period of mode i.

If modal responses are not independent of each other a more accurate procedure like the CQC-method needs
to be used.

The following numerical example shows this difference between SRSS and CQC.
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Example 03-1.esa

A four-storey symmetrical building is modelled in a 3D analysis (from [18], p.15-9). The building is symmetrical;
however, the centre of mass of all floors is located 25 inches from the geometric centre of the building.

Frame # 1
[ | ] L | _\\ | ry
[ 200" Sl 5[)"—-|-— 200" —»
Frame # 3
\ N 1
"\ Frame#2 . 2
- <
3 I
4 s C.G. To! 5
m [ S
o ®
« — Frame # 4 M
LS - / = - ¥ = = - -——l—
250"
«—— 550" —

The structure has the following natural frequencies for the first 5 modes:

Mode 1:f=13,87 Hz
Mode 2:f =13,93 Hz
Mode 3:f = 43,99 Hz
Mode 4:f = 44,19 Hz
Mode 5:f = 54,42 Hz

It is clear that modes 1 & 2 and 3 & 4 are very closely spaced. It is typical for most three-dimensional building
structures that they are designed to resist earthquakes from both directions equally. Therefore the similar
eigenmodes in X and Y-direction have almost the same natural frequencies.

Because of the small mass eccentricity, which is normal in real structures, the fundamental mode shape has

X, ¥, as well as torsion components. Therefore, the model represents a very common three-dimensional
building system.

The building was subjected to one component of the Taft 1952 earthquake. An exact time history analysis
using all 12 modes and a response spectrum analysis were conducted. The maximum modal base shears in
the four frames for the first five modes are shown in the figure below.
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The maximal base shear forces are:

Mode 1: F = -57,53 kN
Mode 2: F = 52,30 kN
Mode 3: F = -9,02 kN
Mode 4: F = 8,12 kN
Mode 5: F = 0,33 kN

47,33 k

T2k

52.30 k

B2k

-

5230k
-
I
B
(=]
V2, max i
4]
-
5230k
B2k 040k
- -
I i | d
E AL £
)
o =
Via, maae ; 2 V5, max ;
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To obtain the Global Response, these modal responses are combined using both the SRSS-method and the
CQC-method as well as a sum of the Absolute Values.

Now the maximum total base shears using different methods are compared:
The time history base shears are exact.
The SRSS method produces base shears that under-estimate the exact values in the direction of the
loads by approximately 30 percent and overestimate the base shears normal to the loads by a factor

of 10.

The sum of the absolute values grossly over-estimates all results.

The CQC-method produces very realistic values that are close to the exact time history solution.

5.44 k

16 Kk

102.1 k

- =

M24k

116 k

127 k

(a) Time History

4.85k

127 k

{c) Sum of Absolute Values
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Results for the global Base Shear:

Lateral Transversal
Exact solution using Time- 112,4kN 5,44kN
History Analysis
Global Base Shear using 78,8kN 78,8kN
SRSS
Global Base Shear using 111,1kN 6,37kN
cQc

In this example, the SRSS-method overestimates the Base Shear by a factor of 10.

For the CQC-method, the following Modal Cross Correlation coefficients p;; are used with a damping ratio §;;

of 5%.
Mode 1 [2 [3 4 5
1 1,000 0998 0006 0,006 0,004
2 0,998 1,000 0,006 0006 0,004
3 0,006 0,006 1,000 0,998 0,180
4 0,006 0,006 0,998 1,000 0,186
5 0,004 0,004 0,180 0,186 1,000

It is of importance to note the existence of the relatively large off-diagonal terms that indicate which modes are

coupled.

If one notes the signs of the modal base shears shown on the previous page, it is apparent how the application
of the CQC method allows the sum of the base shears in the direction of the external motion to be added
directly. In addition, the sum of the base shears, normal to the external motion, tend to cancel.

The ability of the CQC-method to recognize the relative sign of the terms in the modal response is the key to
the elimination of errors in the SRSS-method.
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3.3.  Seismic calculation in SCIA Engineer

The following diagram show the required steps to perform a Spectral Analysis calculation:

Activate the functionalities
“Dynamics” and « Seismic Analysis »

v

Create a mass group

/\

Input masses Generate masses from static load cases

o~ -

Create a mass combination

!

Create a seismic spectrum

!

Create a seismic load case

!

Refine the Finite-Element mesh if required

!

Specify the number of eigenmodes to be calculated

!

Perform a linear calculation

As specified in the theory, the dynamic calculation is transformed to an equivalent static calculation. Therefore,
a Linear Calculation needs to be executed. During this calculation, the Free Vibration Calculation will also be
performed since this data is needed for the Seismic results.

The diagram is illustrated in the following examples.
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Example 03-2.esa

In this example a three-storey structure is modelled as a cantilever. The members have cross-section IPE200
and are manufactured in S 235 according to EC-EN. The height of each storey is 4 m. At each storey-level,
the structure carries a mass of 500 kg.

IPE200

IPE20D
4000

IPE20O

One static load case is created: the self-weight of the structure. However, in order not to take the self-weight
into account for the dynamic calculation, the volumetric mass of S 235 can be set to 1 kg/m? in the Material
Library. This will render it easier to check the results through a manual calculation.

The structure will be subjected to an earthquake in X-direction according to Eurocode 8, using a Design
Response Spectrum for Ground Type B with a behaviour factor of 2. The coefficient of acceleration is 0,35.

Step 1: functionality

The first step in the Dynamic calculation is to activate the functionality Dynamics on the Functionality tab in
the Project Data. In order to execute a Seismic calculation, also the Seismic spectral analysis functionality
needs to be activated:

Project data X

Basic data Functionality Actions UnitSet Protection

GENERAL DETAILED
Property modifiers 4 Dynamics
Model modifiers Modal & harmonic analysis
Parametric input Seismic spectral analysis | ]
Climatic loads Dynamic time-history analysis
Mobile loads 4 Subsoil
Dynamics Pad foundation check
Stability 4 Steel
Nonlinearity Fire resistance checks
Structural model Steel connections
IFC properties Scaffolding
Prestressing
Bridge design
Construction stages

OK Cancel
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Step 2: mass group

The second step is to create a “Mass Group”.

¥ " Mass groups X
EERFE a2 O @D A vY
MG1 Name MG1
Description
Bound to load case Yes v
Load case LC1-Self weight Y o

Keep masses up-to-date with loads

Actions
Create masses from load case  >>>
Delete all masses >>>
New Insert Edit Delete Close

Step 3: masses

After the Mass Group has been created; the 500 kg masses can be inputted on each storey level:

Step 4: combination of mass groups

Next, the Mass Group is put within a Combination of Mass Groups, which can be used for defining the
Seismic load case.

¥ " Combinations of mass groups X
= i E &2 [ Inputcombinations vY
CM1 Name CM1

Description

4 Contents of combination
MG1[] 1.000

New Insert Edit Delete Close
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Step 5: seismic load case

After creating a Mass Combination, a Seismic load case can be defined through the workstation « Loads »
and « Load Cases ».

The action type is « Variable ».
The load type is « Dynamic ».
The specification is « Seismicity ».

B " Load cases

IR EE a2 O @@ A
LC1 - Self weight Name LC2
LC2 - SX Description SX
Action type Variable
Load group LG2
Load type Dynamic

Specification Seismicity

Now the parameters for the seismic load case will become visible. These parameters will now be explained

(going from top to bottom).

Name
Description
Action type
Load group
Load type
Specification
« Seismic action
Response spectrum
Direction
Rotation about Z axis [deg]
Factor X
Factor Y
Factor Z
Acceleration factor
Overturning reference level [m
4 Equivalent lateral forces
ELF method
4 Accidental eccentricity
Method
4 Modal superposition
Type of superposition
Unify eigenshapes
Filter on total mass ratio
Filter on minimal mass ratio
Use residual Mode
4 Signed results
Use dominant mode
Master load case

Combination of mass groups

62

LC2

SX
Variable
LG2
Dynamic

Seismicity

FS1

X
0.00
1

0

0

1
0.000

Disabled

Disabled

SRSS

None
CM1
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= Response Spectrum:

o After choosing the « Load type » as « Dynamic », you will see the different spectrums
which are already composed in the project (FS1 by default). You can tick on the three
points on the line “Response Spectrum » to go to the list with spectrums, and then choose
“New” to create a new spectrum.

4 Seismic action

Response spectrum FS1 Yo
o Itis also possible that there is no spectrum in the project yet. Then, after choosing the
« Load type » as « Dynamic », the software will automatically open the list with spectrums
and click on “New” for you. The next window will pop up. Choose « Input type =
Eurocode » and tick on « Code Parameters ».

Seismic spectrum X

Frequency[Hz] Period[s] Acceleration[m/s:
1 0.00 1000.00 0.69 Name Fs1
2 025 3.98 0.69 DiawinE Yo Period v
3 0.25 3.97 0.69
4 025 3.96 0.69 ['nPut type EN 1998-1:2004 - Eurocode ¥ ]
5 0.25 3.95 0.69

; Max frequency 30.00 Hz

6 0.25 3.94 0.69
7 0.25 3.93 0.69
Sl 0-28 292 059 L Code parameters ]
9 0.26 3.91 0.69
10 0.26 3.90 0.69 oK acdl

o In« Code Parameters », the spectrum will be defined:

= The coefficient of acceleration aq is 0,35.
Note that ag is automatically calculated after changing coefficient of acceleration
ag.

= The behaviour factor q is 2.

= The subsoil type is type B.

= The spectrum type is type 2.

= The spectre is used in X (and Y) direction, so the horizontal direction.

B " Code parameters X

coeff accel. ag 0.350
ag - design acceleration [m/s*: 3.433

q - behaviour factor 2.000

beta 0.200
S, Tb, Tc, Td manually? No v
Subsoil type B v)
Spectrum type type 2 v
Direction Horizontal v

Direction factor 1
S - soil factor 1.350
Tb 0.050
Te 0.250
Td 1.200

OK Cancel

o After changing the parameters, click on « OK » until you get back to the load case.
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= Direction: you need to choose a direction (X, Y or Z) to apply a spectrum in this global direction. We
advise to use one direction by load case, and to combine the different load cases in one seismic
combination.

= Rotation around Z axis [deg]: if you decide to apply a spectrum in an inclined direction from X, Y or
Z axis, you can define a rotation angle. For example if you define 45° in the X direction, the spectrum
will applied in the following direction:

b 4

spectrum direction

Wzso >
X

= X, Y Z coefficients: this is used to modify the accelerations in the spectrum without changing the
spectrum parameters. We advise to set this to 1.

= Acceleration factor: this factor is multiplied with the factor X, Y, Z (all of them). This factor should be
set to 1 since the acceleration factor is already used in the parameters of the spectrum.

= Overturning: this parameter is used when the supports of the structure are above ground level. By
default, this value equals 0.

= Equivalent lateral forces: the analysis method by default in the software is the 4.3.3.3 article « Modal
analysis using response spectrum ». But by ticking this option, the software will apply the method of
4.3.3.2 article « Analysis method using lateral forces ».

= Accidental eccentricity: most of the seismic codes require that structures are checked for torsion
due to mass eccentricity including an additional eccentricity, which is the “accidental eccentricity”.
Please note, that “accidental eccentricity” may be used only together with the reduced model
analysis. We will explain the reduced model analysis and accidental eccentricity later on.

= Modal superposition:
- Type of superposition : here the type of modal superposition can be chosen. In this example,

the SRSS method is used. The use of the CQC method will be illustrated later on.
= SRSS: Square Root of Sum of Squares. Because of the square root in the
formulas of the modal combination methods, the results are always positive.

R= JR%l) +R%) + Riyy + RE,y + Rfg) + -
= Max: modified SRSS method (method not included or described in Eurocode 8)

N

Riot = [Rmax) + Z R
=1

= CQC: Complete Quadratic Combination

N N
Riot = Z Z Ry pij- R

i=1 j=1

- Unify eigenshapes: this option can be used in the seismic analysis in the case of the method
SRSS. Classical the following formula is used for SRSS:

— 2 2 2 2 2
R= \[R(n + Rz + Ry + Ry + R + -
If the option unify eigenshapes is checked, then the following condition is verified:
(D.
1- ;1 < precision % (ori <jand w; < w;)

)
If the check is fulfilled and mode (i) and (j) are multiple, then the superposition will be
modified:

2
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Note:

The options under Multiple Eigen Shapes can be used to avoid the errors in the SRSS-
method for closely spaced modes. As specified in the theory however, it is advised to use
the CQC-method in such cases (Eurocode 8 article 4.3.3.3.2).

Filter on total mass ratio: Only modes with the highest modal mass ratio are taken into
account for modal superposition. Modes are sorted in decreasing order of their modal
mass ratio and superposed until the specified cumulated mass ratio is reached.

The ratio to reach should be at least 90% to respect the article 4.3.3.3.1 from EN 1998-1-
1.

4 Modal superposition
Type of superposition SRSS v
Unify eigenshapes
Filter on total mass ratio
Required total mass ratio [%6] 100.00
Filter on minimal mass ratio

Use residual Mode

Filter on minimal mass ratio : Only modes with a modal mass ratio higher than the
specified value are taken into account for modal superposition.

The minimal mass ratio should be at least 5% to respect the article 4.3.3.3.1 from EN
1998-1-1.

4 Modal superposition
Type of superposition SRSS v
Unify eigenshapes
Filter on total mass ratio
Filter on minimal mass ratio
Required minimal mass ratio [9%] 100.00

Use residual Mode

Note: if the two previous filter options are not ticked, all modes asked by the user will be
displayed and considered in the modal superposition.

o

Use residual mode: you have to verify if 90% of the total mass is included in de modal
masses (EN 1998-1-1 art.4.3.3.3.1). This will be checked later on in the calculation
protocol. If the number of total participating mass is under 90%, the number of eigen
frequencies has to be increased.

To avoid this check, it is possible to choose missing mass in modes or residual mode.

= Signed results / Dominant mode: you can select the mode shape which will be used to define the
sign. If automatic is chosen as mode shape, the mode shape with the biggest mass participation is
used (sum of direction X, Y and Z). This option can be used for example for shear walls.

This result only makes sense if this single eigenmode is clearly the most dominant for that spectrum,
and all other modes have almost no significance for that spectrum. But since this option manipulates
the results, we advise you not to use it, unless you have a very good knowledge of SCIA Engineer
and of seismic calculations.
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To conclude, the complete set of parameters in the load case will be shown in the image below:
X

66

B Load cases

=t EE a2 OB A

v Y

LC1 - Self weight
LC2 - SX

New Insert

Edit

Name LC2
Description SX
Action type Variable
Load group LG2
Load type Dynamic
Specification Seismicity
4 Seismic action
Response spectrum FS1
Direction X
Rotation about Z axis [deg] 0-00
FactorX 1
FactorY ©
FactorZ 0
Acceleration factor 1
Overturning reference level [m] 0.000
4 Equivalent lateral forces
ELF method Disabled
4 Accidental eccentricity
Method Disabled
4 Modal superposition
Type of superposition SRSS
Unify eigenshapes
Filter on total mass ratio
Filter on minimal mass ratio
Use residual Mode
4 Signed results
Use dominant mode
Master load case None

Combination of mass groups CM1

Actions
Delete all loads

Copy all loads to another loadcase

Delete

o>

D>

Close
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Step 6: finite element mesh

As specified in the previous chapters, the finite element mesh needs to be refined to obtain precise results.
This can be done through the main menu Tools / Calculation & Mesh / Mesh settings.

For this example however, the default mesh is not refined which will make it easier to verify the results by a
manual calculation. But for a default dynamic calculation, we advise to change the number of 1D elements in
the finite mesh to 5 ~ 10 finite elements.

¥ Mesh setup X

Name MeshSetupl

( Average number of 1D mesh elements on straight 1D members 10 ]

Average size of 1D mesh element on curved 1D members [m] 0-200
Average size of 2D mesh element [m] 1.000
Connect members/nodes E

Setup for connection of structural entities

P Advanced mesh settings

B |& & OK Cancel

Step 7: number of frequencies

The last step before the seismic results can be checked, is setting a sufficient amount of eigenmodes to be
calculated. For this example, 2 eigenmodes are chosen.
In the main menu Tools / Calculation & Mesh / Solver settings, the number of frequencies is thus set to 2.

# ° Solver setup X

Name SolverSetupl
Specify load cases for linear calculation
4 Advanced solver settings
P General
P Initial stress

4 Dynamics

Type of eigen value solver Lanczos v
( Number of eigenmodes 2 ]
Modal mass matrix Diagonal v

Use IRS (Improved Reduced System) method

P Mass components in analysis

P Soil
B (& (& OK Cancel
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Step 8: general results

A linear calculation and eigenmodes have been performed.

The deformed structure can be shown to view the eigenmodes using the 3D displacements:

RESULTS (1) A X
Name Déplacements 3D
¥ SELECTION
Type of selection  All v
Filtler No v
¥ RESULT CASE
Typeofload Mass combinations v
Mass combination CM1/2-3.44 v
wireframe @Y
.' \
&
\ |
|
|
|
|
| |
| !
|
—> X m—y
Eigenmode 1 Eigenmode 2

The eigenmodes can be displayed by this option:

B & g

AN M S e

Eigen frequencies

Mass combination : CM1
1] 0.53 3.30 10.91 1.90
2 3.44 21.62 467.64 0.29
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To check if the number of modes is sufficient, we have to have a look to the calculation protocole for the
eigen frequencies. To display the calculation protocole, the modal analysis has to be calculated (via the menu
Tools / Calculation & Mesh / Calculate).

RESULTS (1) A | X
Name Protocole de calcul
Type Eigen frequency v
Include list of assumptions (
ACTIONS >»
1 3.3027 1.0 0.53 | -33.0158 0.0000 0.0000 0.7267 0.0000 0.0000 0.0000 0.2722 0.0000
" 21.6256 0.29 3.44 17.9771 0.0000 0.0000 0.2154 0.0000 0.0000 0.0000 0.5271 0.0000
0.5421 0.0000 0.0000 0.0000 0.7953 0.0000

As specified in the first example of this course, the Modal Participation Factors show the amount of mass
that is vibrating in a specific eigenmode as a percentage of the total mass.

For the first Eigenmode, 73% of the total mass is vibrating. For the second Eigenmode, 22% is vibrating. In
total, these two Eigenmodes account for about 94% of the total mass.

According to Eurocode 8 [7] the sum of the effective modal masses for the modes taken into account must
amount to at least 90% of the total mass of the structure.

This criterion is fulfilled which indicates the two Eigen modes are sufficient for this example.

But it is important to see that the number of eigenmodes taken into account is only sufficient in the X-
direction to evaluate a dynamic load working in the X-direction. If the total would be under 90%, the number
of eigenmodes in the solver setup would have to be augmented and the calculation protocol for the Eigen
Frequency would have to be checked again.

The Damping ratio shows the manually inputted damping ratio for the respective Eigenmodes.
It is important to keep in mind that the Seismic Spectra of Eurocode 8 have been calculated with a damping
ratio of 5% as specified in the theory. When a damping ratio is manually inputted, the spectra need to be
adapted. This is done through the Damping Coefficient.

- Sax, Say and Saz represent the spectral accelerations.

- G(j) is the mode coefficient for mode j.

- Fx and Fy are the Base Shears for each mode.

- Mx and My are the Overturning Moments for each mode.

The last line in the table shows the global response. This response was obtained by means of the SRSS-
method for combining the modal responses.

The formulas for these parameters have been shown in the theory and a manual check can be found in annex
C.
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Example 03-3.esa

The previous example is repeated and will now be calculated using the CQC-method. For all frequencies, a
damping ratio of 2% is used.

In Step 6, the CQC method is chosen in the “Type of superposition” option:

B ' Load cases X

- RFER a2 O @B A Y
LC1 - Self weight Name LC2
B Description SX
Action type Variable v
Load group LG2 U
Load type Dynamic v
Specification Seismicity v
4 Seismic action
Response spectrum FS1 A e
Direction X v
Rotation about Z axis [deg] 0-00
FactorX 1
Factor Y
Factor Z

Acceleration factor

© = © ©

Overturning reference level [m] 0.000
4 Equivalent lateral forces
ELF method Disabled v
4 Accidental eccentricity
Method Disabled v
4 Modal superposition
Type of superposition CQC v
[ Damping [%] 2.00 ]
Filter on total mass ratio

Filter on minimal mass ratio
Use residual Mode
4 Signed results
Use dominant mode
Master load case None v

Combination of mass groups CM1 Y

Actions
Delete all loads >>>
Copy all loads to another loadcase >>>
New Insert Edit Delete Close

After choosing « CQC » for the type of superposition, an option « Damping » displays below. The user has to
defined a constant damping ratio which will be used for all eigenmodes. By default, the displayed ratio is equal
to 5% because this is the ratio used in the seismic spectrums definition of the Eurocode 8. But in this example,
the ratio will be equal to 2%.

This damping spectrum will be used for the calculation of the Modal Cross Correlation coefficients of the
CQC-method and will also be used to calculate the Damping Coefficient for each mode as specified in the
previous example.

When the spectrum has been inputted, the Linear Calculation can be re-run.
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The following results are obtained through the Calculation protocol of the Linear Calculation:

Oe{le = AL retat cal. amao Wi Whiod it 3 2 & b

0.000| 0.000] 2.48] 0.89| 0.00] 0.00] -8.95

1 0.53 0.02 1.19523 0.73| 0.821
2 3.44 0.02 1.19523 0.22| 5.955] 0.000] 0.000] 0.23] 1.93] 0.00] 0.00] 5.57
Niveau= | 0.00 0.4 2.12] 0.00] 0.00] 10.54

The results show that for each mode, the Damping Ratio is equal to 2%.

As specified in the theory, the Seismic Spectra of Eurocode 8 have been defined using a Damping Ratio of
5%. Since now another value is used for the damping, the spectrum needs to be corrected using a Damping
Coefficient n.

Following Eurocode 8 [6], this coefficient is calculated as follows:

I U
"= e+~

Where: £ = Damping Ratio expressed in percent.

(4.13)

For a default damping ratio of 5%, n equals unity.

The lower limit of 0,55 for the Damping Coefficient indicates that Damping Ratio’s higher than + 28,06% have
no further influence on the seismic spectrum.

For the exact application of n in the formulas of the seismic design spectra, reference is made to Eurocode 8

[7].

In this example, the damping ratio of 2% causes the following Damping Coefficient:

=19 103
L Fr) e

This indicates that the spectral accelerations will be augmented by 20% due to the fact that less damping is
present in the structure. The spectral accelerations of the previous example can thus be multiplied by n:
Sax(1) = 0,6870m/s? * 1,1953 = 0,8212m/s?
Sax(z) = 49856 m/s? * 1,1953 = 5,9589 m/s>

With these new spectral accelerations, the calculation of the Base Shear, Overturning Moment, ... can be
repeated.

Manual Calculation

In this paragraph, the application of the CQC method is illustrated for the global response of the Base Shear.

- Mode 1 : oy = 3,3027rad/s F(1) = 0,8951kN
- Mode 2 : g = 21,6256rad/s F(z) = 1,9258kN
Using a spreadsheet, the Modal Correlation coefficients p;; are calculated with a damping ratio &;; of 2%.
Mode 1 2
1 1 0,0003065
2 0,0003065 1
N N
Riot = Z Z Ry pij- Ry
i=1 j=1

0,8951kN * 1 * 0,8951kN
+ 0,8951kN * 0,0003065 = 1,9258kN
+1,9258kN * 0,0003065 * 0,8951kN
+1,9258kN * 1 x 1,9258kN

Ryor = 2,12kN

Riot =
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3.4. Seismic combinations

There are different possibilities to create load combinations which include also seismic load cases.
Here we will explain the optimal method in SCIA Engineer using an example.

Example 03-4.esa

First of all, three load cases are created.
The general format of effects of actions should be:

Eq = E(Gk,]'; P; AEd;llJz,iQk,i) j=21;i=1

The combination of actions in brackets can be expressed as:

S Gy 2 A+ Y i

jz1 iz1

Where Eqd:
Eeax + 0,3.Eedy + 0,3.Eeq:
0,3.Eedx + Eedy + 0,3.EEdz
0,3.Eedx + 0,3.Eedy + EEdz

So, there load cases include respectively the seismic spectra in the directions X, Y and Z.

For example:
B Load cases X
S iEFEE A, O w@ A vY
LC1 - Self weight Name LC4
LC2SR Description SZ
Lcs - SY Action type Variable v
M Load group LG2 % o
Load type Dynamic v
Specification Seismicity v
4 Seismic action
Response spectrum FS2 adac
Direction Z v
Factor X ©
FactorY 0
FactorZ 1

Acceleration factor 1
Overturning reference level [m] 0.000

4 Equivalent lateral forces

ELF method Disabled v
4 Accidental eccentricity
Method Disabled v
4 Modal superposition
Type of superposition SRSS v
Unify eigenshapes

Filter on total mass ratio
Filter on minimal mass ratio
Use residual Mode
4 Signed results
Use dominant mode
Master load case None N

Combination of mass groups CM1 v

Actions
Delete allloads  >>>
Copy all loads to another loadcase  >>>
New Insert Edit Delete Close

Please note that a different Eurocode must be generated for the vertical direction. In SCIA Engineer, a load
case must be made for component of the earthquake in the X-direction, another for the Y-direction, and another
for the Z-direction.

Please make sure that the ‘factor’ just underneath the spectrum, « Coef.Z », is not set to ‘zero’, since the

accelerations in the seismic spectrum will be multiplied with this value.
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Frequency[Hz]

0.00
0.25
0.25
0.25
0.25
0.25
0.25
0.25

© ® N O U A W N e

0.26

[
=3

0.26

8" Code parameters

coeff accel. ag

ag - design acceleration [m/s”.

q - behaviour factor

beta

S, Tb, Tc, Td manually?

0.015
0.150
1.500
0.200
No

Subsoil type D

Spectrum type type 2

( Direction

Vertical

Direction factor

S - soil factor

Tb
Tc
Td

0.45

1.000
0.050
0.150
1.000

OK Cancel

3.92
391
3.90

0.01
0.01
0.01

35,
40,

FS2
|Period v
EN 1998-1:2004 - Eurocode ¥

130.00 Hz

Code parameters

OK Cancel

Next, we have to assign a type of load group to the seismic load case.

First of all, the relation between load cases in the same group has to be defined. The three seismic spectra
have to appear always in the same combination. So, the option ‘together’ will be chosen here.
Next, the type of load has to be selected: for this, the special type ‘seismic’ has been implemented.

B Load groups

= fEFE a2 OO0 A
LG1

LG3
LG2

New

Insert

Edit

Delete

Name LG2
Relation Together

Load Seismic

X
vy

Close
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After the creation of seismic load cases, the combinations can be made. For this purpose, a new type of
combinations was implemented: namely the Seismic combination according to the EC-EN.

To use this special type of combination, the seismic load cases must have a load group with properties ‘seismic’
and ‘together’ assigned to it. Also no active coefficients can be used.

® ' Combinations X
= &M E &2 [ Inputcombinations v
ULS-Set B (auto) Name ULS-Seis (auto)

!SLS-Char (auto) Description

Type EN-Seismic
Updated automatically
Structure Building
Active coefficients
4« Contents of combination

LC1 - Self weight [-] 1.000
LC2 - SX [] 1.000
LC3-SY[-] 1.000
LC4 -SZ [-] 1.000
LC5-LL/ catE[-] 1.000

Actions
Explode to envelopes  >>>
Explode to linear >>>
Show Decomposed EN combinations  >>>

New Insert Edit Delete Close

This combination envelope will automatically look at the seismic load cases with both a positive and a negative
coefficient, and will automatically make one of the seismic load cases the primary load case and the others
secondary load cases.

If we would not yet take into account that the coefficients can be both positive and negative, then an example
would be:

Eeax + 0,3.Eeqy + 0,3.Eeq:

0,3.Eedx + EEedy + 0,3.Eed:

0,3.Eedx + 0,3.Eedy + EEdz

Note:

In the case of the EC-EN, we have to make two sets of combinations, one for the deformations and one for
the internal forces. This means that we would have in total six EN-Seismic load cases.

For internal forces, the load cases have to be introduced as described above.

For deformation results, we must create three new load cases, and multiply all displacements results by the
behaviour factor q, as described on article 4.3.4 of EN 1998-1-1:
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4.3.4 Displacement calculation

(1)P  If linear analysis is performed the displacements induced by the design seismic
action shall be calculated on the basis of the elastic deformations of the structural
system by means of the following simplified expression:

d;=q,d. (4.23)

where

ds is the displacement of a point of the structural system induced by the design
seismic action;

qa is the displacement behaviour factor, assumed equal to g unless otherwise
specified;

d. is the displacement of the same point of the structural system, as determined by
a linear analysis based on the design response spectrum in accordance with
3.2.25.

If we consider our example with a q factor of 1,5, we would have to copy the existing seismic load cases, and
note the behaviour factor value (here 1,5) in the “Acceleration factor”. In this way, all the acceleration values
in the previously defined spectrum will be multiplied by this coefficient :

® Load cases X
= fZFEE a2 OB A vY
LC1 - Self weight Name LC6
Lot Solver index (2)
LS Description SX dlef
LC4-SZ .
LCS-LL/ catE Action type Variable v
LC6 - SX def Load group LG2 il
LC7 - SY def Load type Dynamic v
LC8 - SZ def Specification Seismicity v
4 Seismic action
Response spectrum FS1 Vi
Direction X v
Rotation about Z axis [deg] 0-00
FactorX 1
FactorY 0
FactorZ ©

[ Acceleration factor 1.5 ]
Overturning reference level [m] 0.000

4 Equivalent lateral forces
ELF method Disabled v

4 Accidental eccentricity

¢ Nieabklad .-

Then all you have to do, is make a new seismic combination envelope with the new load cases:
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# ' Combinations X |
= fiEZMFE & 2 [ Inputcombinations v
ULS-Set B (auto) Name Seismic_Def
SLS-Char (auto) Description
ULS-Seis (auto) Type EN-Seismic
Seismic_Eff S
Seismic_Def Structure Building
Active coefficients
4 Contents of combination
LC1 - Self weight [-] 1.000
LC5-LL/ catE[] 1.000
LC6 - SX def [-] 1.000
LC7 - SY def [-] 1.000
LC8 - SZ def [-] 1.000
Actions
Explode to envelopes >>>
Explode to linear >>>
Show Decomposed EN combinations >>>
New Insert Edit Delete Close
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3.5. Mass in analysis

As mentioned before, the sum of the effective modal masses for the modes taken into account must amount
to at least 90% (EN 1998-1-1 art.4.3.3.3). The user can try to achieve this with the following possibilities:

- Take more natural frequencies into account

- Assign mass more to nodes/connection instead of beams (to avoid local eigenmodes).

The mass which has not been taken into account (for example, if the effective modal mass is 90%, then there
is 10% not taken into account), can be treated in two possible different ways in SCIA Engineer:

4 Modal superposition
Type of superposition CQC v
Damping [%] 5-00
Filter on total mass ratio
Filter on minimal mass ratio

Use residual Mode

The used method is set in each seismic load case and is again displayed in the linear calculation protocol.
Let’s take as example that the effective modal mass in a direction is 90%. Then how can the other 10% be
treated?
- Ifthe option « Use residual mode » is not ticked: in this case, the 10% would be ignored. We would
only take into account 90% of the mass of the structure to calculate the effects of an earthquake.
- If the option « Use residual mode » is ticked: in this case, a ‘fictive’ mode corresponding to the
combination of all missing modes can be calculated. But since these missing modes are over
different natural frequencies, the last found frequency will also be the natural frequency of this
mode. In the calculation, the forces in this mode will be calculated in the same way as in the other
modes.

A detailed explanation of these modes by using examples can be found in Annex D.

3.6. Modal superposition

The response spectrum method uses a modal superposition of the relevant eigenmodes of the structure. The
methods which are used for modal superposition are the ones described at the beginning of the chapter: SRSS
or CQC.

These methods have the advantage of very easily providing design values of all results (displacements,
internal forces...) but only part of the information is available:

- Min and max values of any result can be determined;

- The actual sign of a result cannot be defined;

- The concomitance of separate results cannot be defined.

The loss of concomitance and sign of results is an issue typically when computing resulting forces in shear
walls: it is not possible to compute a resultant from internal forces after modal superposition, as typically all
raw results are positive.

Computing resultant forces in one of those shear walls would typically give near-zero moments and extremely
overestimated axial forces.

An automatic method can be used since using signed results (described below) is only a workaround to obtain
usable resulting forces.
The rigorous method for computation of resultants in the context of the response spectrum method can be
summarized as follows:

- Compute the local internal forces for each eigenmode;

- Compute the resultant force for each eigenmode separately;

- Apply the modal superposition to the obtained modal resultant values.
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When proceeding so, no result signature is necessary to obtain correct values of resulting forces. Moreover
there are cases where the method described in the previous paragraph gives overestimated results of most
result components and can therefore only be seen as an approximation. The method described here is clearly

more accurate.

This option is enabled by default for new projects in SCIA Engineer. For old projects (created before version
2013), you have to open the main menu Tools / Calculation & Mesh / Solver Settings.

To obtain usable values of resulting forces, a possibility is the so-called “signed results” method.
It consists of applying some signature scheme to raw results of the modal superposition. A classical approach

uses the sign of the most significant eigenmode.

It is however very important to know that this method will only give good result if there is 1 and only 1
eigenmode of great importance in that respective direction (compared to the other eigenmodes).

|, Superposition » Mode
prédominant

11 e

|
[
2

]

r"mmmﬂmm
&
m..l.]:'.:..._,t

. a0
C,\

Enveloppe des résultats signés

Applying this to shear walls, it is possible to “sign” the internal forces, making them suitable for computation of
resulting forces.

You can sign results in SCIA Engineer by selecting a signature mode manually or a default mode determined
by the program. If the Automatic is chosen, the mode shape with the biggest mass participation is used (sum

of direction X, Y and 2):
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7 Load cases X
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- iRFEE s OB A vY
LC1 - Self weight Name LC2
L3-8 Description SX
Action type Variable v
Load group LG2 o
Load type Dynamic v
Specification Seismicity v
4 Seismic action
Response spectrum FS1 7 e
Direction X v
Rotation about Z axis [deg] 0-00
Factor X 1
FactorY ©
FactorZ ©

Acceleration factor 1
Overturning reference level [m] 0.000

4 Equivalent lateral forces

ELF method Disabled v
4 Accidental eccentricity
Method Disabled v
4 Modal superposition
Type of superposition SRSS v
Unify eigenshapes

Filter on total mass ratio
Filter on minimal mass ratio
Use residual Mode
4 Signed results
Use dominant mode
Dominant mode shape Automatic A
Master load case |Automatic

Combination of mass groups

Actions

Copy all loag

Obﬂnm;w[m

New Insert Edit Delete

s
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Chapter 4: REDUCED ANALYSIS MODEL
4.1. Theory

The actual tendency in FE structural analysis is using full 3D modelling of the considered structure. SCIA
Engineer obeys that rule as structures are usually modelled in 3D using beam and shell elements, including
buildings.

Once a detailed 3D model is ready for statical analysis of a structure, it is natural to use it also for dynamic
analysis and, more specifically, for seismic design. A typical issue of full 3D model is, that seismic design
regards mostly the global behaviour of the structure whence the full mesh of the structure provides a lot of
information about local behaviours. When performing the modal analysis, the full mesh finds all local and global
vibration modes, but the local modes are irrelevant for the overall seismic response of the structure. It appears
hence logical to use a different, reduced mesh for the dynamic analysis, which ignores these local modes.

There are well known matrix condensation techniques (Guyan Reduction, also known as static condensation)
which allow the user to obtain a reduced system in a very efficient way, but those methods are not well suited
for dynamic analysis. An Improved Reduced System (IRS) method has been developed which takes into
account not only the stiffness matrix of the system, but also the mass matrix during the condensation process.
That method proved to give excellent results for dynamic analysis, with both modal analysis and direct time
integration methods.

The algorithm implemented in SCIA Engineer uses the IRS method and consists of 3 steps:

1. The IRS method is used for condensing the mesh of the analysis model.

2. The modal analysis is performed using the reduced mesh, which has typically 1’000 times less degrees of
freedom than the original full mesh. This makes the calculation of eigenvalues massively faster on large

structures and also avoids unwanted local modes. The latter is particularly interesting for seismic analysis.

3. The results of the reduced system are expanded to the original full mesh, allowing for output of detailed
results in the entire structure.

42'840DoF 24 DoF
Full 3D storey- Condensed model Expand back to full
based input & dynamic analysis mesh for result input

MJA — 2024/08/23 81



Advanced Training — Dynamics

The IRS method allows:

1. Elimination of irrelevant, local bending vibration modes in the slabs: local modes in all structural
elements are implicitly removed, due to the elimination of unwanted degrees of freedom. Of course, adding
more reduction nodes would allow for more detailed analysis of local modes, but it is particularly interesting for
seismic analysis to keep in the reduced model only the nodes that are strictly necessary to reproduce the
typical seismic behaviour of a building. Ultimately, it is up to the user to choose the reduction points in such a
way that the wanted eigenmodes are obtained.

2. Reduction of computation time: the computation time is reduced, due to the drastic reduction of the
number of degrees of freedom; actually, the reduction is even more important than with diaphragms, as
supporting members are also condensed.

3. Easy handling of mass eccentricities for each deck: the IRS analysis uses a full mass matrix, which
allows for exact implementation of mass eccentricity in each node of the reduced system.

Remark: The elimination of unwanted frame effects from the structural behaviour (considering deck slabs as
diaphragms) is not addressed by the IRS analysis in itself, as it does not modify the mechanical behaviour of
the structure. However, as unwanted local bending modes are implicitly removed from the reduced system,
so-called flexible diaphragms may be easily simulated by significantly reducing the bending stiffness of deck
slabs. Not only does that allow obtaining classical diaphragm behaviour by means of a very low bending
stiffness, but also intermediate behaviour where the bending stiffness is less drastically reduced and frame
effects are therefore reduced, but not completely removed.

The condensed model is obtained from Reduction nodes. R-nodes are placed in each storey, at the specified
level, in the middle of the structure (all R-nodes are located on the same vertical axis).

During the analysis, the reduced model is automatically generated from the full mesh of the structure. Each
node of the full mesh is mapped to the closest R-node. In a typical building configuration, this means that each
R-node will receive the stiffness, loads and masses from the corresponding deck slab, from the top half of the
supporting members below the slab and from the bottom half of the supporting members above the slab.
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Unlike the classical modal analysis, which typically uses a lumped mass matrix (only diagonal terms are non-
zero), the reduced system uses a full mass matrix , with non-zero values out of the diagonal. This means that
mass eccentricities can be taken into account easily by the reduced system. The very small size of the reduced
system allows using the full mass matrix.

Therefore the reduction points — or so-called R-nodes — that will constitute the reduced model do not need to
be located in a particular position, such as the mass centre of each storey. As the structure may have to be
calculated several times with various distributions of the masses, the mass centre of each storey is likely to be
slightly different depending on the selected mass combination. Thanks to the use of a full mass matrix, the
same R-nodes may be used in all cases.

During the analysis, the reduced model is computed automatically from the full mesh. Each node of the full
mesh is mapped to the closest R-node of the reduced model.

4.2. IRS Method in SCIA Engineer

To make an IRS calculation, you first have to perform all the steps as described in detail for seismic calculation
in previous chapters. As a reminder, those steps are:

Activate the functionalities
“Dynamics” and « Seismic Analysis »

y

Create a mass group

/\

Input masses Generate masses from static load cases

o~

Create a mass combination

!

Create a seismic spectrum

!

Create a seismic load case

!

Refine the Finite-Element mesh if required

!

Specify the number of eigenmodes to be calculated

MJA — 2024/08/23 83



Advanced Training — Dynamics

Before doing the linear analysis, the additional steps you have to execute in order to make an IRS calculation
are:

1. You have to enable the reduced model analysis in the project. This can be done via the main menu
Tools / Configuration and mesh / Solver Settings:

5 Solver setup X

Name SolverSetupl
Specify load cases for linear calculation
4 Advanced solver settings
P General
P Effective width of plate ribs
P Initial stress
4 Dynamics
Type of eigen value solver Lanczos v
Number of eigenmodes 10
Use IRS (Improved Reduced System) method
P Mass components in analysis

P Soil

B & & OK Cancel

V|

2. Define the building storeys. The Reduction nodes will be calculated from the storey data. In SCIA
Engineer, each storey is reduced into one R node.

To introduce the building storeys, go to the input panel and in « Line grid and storeys », click on
“Storeys”:

| INPUT PANEL | &8  All workstations v

lg Grids & Storeys VI @ All tags v

’® % @ @ ‘ [ I R .\_f‘“ »j:::j. ’ S
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The storey manager where you can input the levels opens:

Storey manager X
Iy
n
om———
n
“ S
2
L_ -
%
oo
Name Z-Bottom [m] Height [m] Repetition Z-Top [m] Description
1 FL1 0.000 4.500 1 4.500
2 FL2 4.500 4.500 1 9.000
38 FL3 9.000 4.500 1 13.500
4 FLa 13.500 0.000 1 13.500
Insert Delete Inserting point X 0.000 m Y 0.000 m OK Cancel

With the default settings, the deck slab of each storey is located at the bottom of the storey, and so is
the corresponding R-node. It is recommended to keep it that way. This can be seen from the storey

Properties:
@
STOREY (1) A
[
Name
Description
Z-Bottom [m]
Height [m]

Filtered allocation of Entities | *=—

Allocation type  All inside v
Include members on top

Include members on bottom

A80

Current used activity

e
o
o
=1

Level of reduction point

ACTIONS >»
Select allocation

Allocate automatically

3. Once the linear calculation has been executed, results are available. There are fundamentally two
types of results available after an IRS analysis:

- The results of the reduced model are automatically expanded to the original mesh and are

accessible through standard output. This will not be detailed here as it is the same as what has
been explained in the previous chapters.
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- Some dedicated results, coming directly from the reduced model, are available in “Results”
workstation, and « Summary Storey Results ». This typically gives information about the
masses, displacements and accelerations at each storey in the reduced model.

© SUMMARY §TOREY RESULTS
P, &
B)& O T S eSS & M s o A
[P

et

@il

- Other results can be displayed via the « Results » workstation as « Detailed Storey Results »:
this menu can be used to display results from the full mesh analysis. It may be used for results
from any linear analysis, with or without dynamic analysis, with or without IRS analysis. It provides
results in all supporting members, with easy selection of members per storey. Walls and columns
may be represented on the same drawing. Typical provided results are: internal forces, resultants
per wall or per storey...

DETAILED STOREY RESULTS

- &

= ®
" Py
B O YW O g eSS & ™« & o A

@il "

Example 04-1.esa
Open the corresponding project. We are going to apply the principles seen above to this small building.
Step 1: set up the seismic model

» Activate “Dynamic” and “Seismic” functionalities from the Project data menu.
Project data X

Basic data Functionality Actions UnitSet Protection

GENERAL DETAILED
Property modifiers 4 Dynamics
Model modifiers Modal & harmonic analysis
Parametric input Seismic spectral analysis
Climatic loads Dynamic time-history analysis
Mobile loads 4 Subsoil
Dynamics Soil interaction
Qiahiliks Pad friindatian rharl

» Create mass groups. For this example, we are going to consider 3 mass groups related to 3 static
predefined load cases : self weight, dead load (DL) and live load (LL).

* Create a combination of mass groups
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7 Combinations of mass groups X ‘
= SEZHF & & 2 [ Inputcombinations vY
CM1 Name CM1
Description
4 Contents of combination

MG1[] 1.00

MG2 [] 1.00

MG3 [] 0.30
| New | Insert | Edit | Delete | Close |

» Define a seismic spectrum. Let’s consider a seismic spectrum with the following parameters :

Seismic spectrum X
10 o 1.00
- 7 Code parameters TTTT T~
06,
coeff accel. ag 0.061
04 ag - design acceleration [m/s*: 0.600
q - behaviour factor 1.500
“ beta 0.200
a0, S, Tb, Tc, Td manually? No v v
= a Subsoil type A v = =
Spectrum type type 2 v
irection Horizontal v
Fracae i Direction
Pmat T 1
1 0.00 Direction factor FS1
S - soil factor 1.000
2 0.25 Frequency v,
Tb 0.050 -
3 0.25
4 025 1c:0-250 'EN 1998-1:2004 - Eurocode ¥
Td 1.200
5 0.25 B 00 e
S 9-25 | OK l ‘ Cancel |
7 0.25 i
S 0-28 - . " CCode parameters ‘
9 0.26 3.91 0.12
10 0.26 3.90 0.12 oK ' ‘ Cancel ‘
- - v )
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88

B’ Load cases X
B iRFEE s OB A vY
W V Name SX
oL Description
= Action type Variable
:z Load group LG3 v
Load type Dynamic
Specification Seismicity
4 Seismic action
Response spectrum FS1 v
Direction X
Rotation about Z axis [deg] 0-00
Factor X 1
FactorY ©
FactorZ ©
Arralaratinn farkar 1
B’ Load cases X
HiEFEW a> O B Al vy
W ‘ Name SY
e Description
= Action type Variable
2: Load group LG3 v
Load type Dynamic
Specification Seismicity
4 Seismic action
Response spectrum FS1 v
Direction Y
Rotation about Z axis [deg] 0.00
FactorX 0
FactorY 1
FactorZ 0
Acceleration factor 1

B " Mesh setup

Name MeshSetupl

Refine the mesh. For this example, we set the mesh as follow:

Average number of 1D mesh elements on straight 1D members 1

Average size of 1D mesh element on curved 1D members [m] 1.000

Average size of 2D mesh element [m] 0.500

Connect members/nodes

4 Advanced mesh settings

4 General mesh settings

Minimal distance between definition point and line [m] 0.001

Create the seismic load cases in X and Y direction in the “Load cases” window:

Choose the number of frequencies which have to be calculated (Solver setup). We chose 10
values.
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Step 2: activate the option “Use IRS (Improved Reduced Model)”

Activate the option “Use the Improved Reduced Model” from the “Solver Setup”.

® ° Solver setup X
Name SolverSetupl
Specify load cases for linear calculation

4 Advanced solver settings

P General

P Effective width of plate ribs

P Initial stress

4 Dynamics

Type of eigen value solver Lanczos v

Number of eigenmodes 10
Use IRS (Improved Reduced System) method

P Mass components in analysis

P Soil
B & & OK Cancel
Step 3: define storeys
Define the storeys from the input panel:
Storey manager X
1 m0———
n
3o
n
-«
[
n
Y X
[T S—
Name Z-Bottom [m] Height [m] Repetition Z-Top [m] Description
1 FL1 0.000 4.500 1 4.500
28 FL2 4.500 4.500 i 9.000
3 FL3 9.000 4.500 1 13.500
4 FLa 13.500 0.000 1 13.500
Insert Delete Inserting point X 0.000 m Y 0.000 m OK Cancel
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The levels are shown graphically. If you select a storey level, you can adapt its properties from the Properties

panel:
+13,509=\ (

FL3

"-\\“

+9,ooou,\

FL2

] —~——_
><::“;><
<

-
e
-

a0

AN

\ SN

[NERYARY

FL1

T
/
T
/

I

>

STOREY (1)

Name
Description
Z-Bottom [m]
Height [m]

Filtered allocation of Entities

!

Allocation type  All inside v
Include members on top

Include members on bottom

AR g

Current used activity

e
o
=3
=3

Level of reduction point

ACTIONS >»
Select allocation

Allocate automatically

You can check if the supporting members of the building are properly allocated to storeys using the ‘Filtered
Allocation of Entities’ property.

Optionally, R-nodes may be placed at any level in each storey. The storey property “level of reduction point”

allows selecting the exact height of the reduction point for each storey separately. 0 corresponds to the bottom
of the storey, 1 to the top of the storey.
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Step 4: perform the linear calculation and check the results

Step 5: summary storey results
There are 3 types of results: storey data, displacements and accelerations.

- Storey data:

Storey data displays for each storey the total mass and the coordinates of the mass center. It is only
available with mass combinations.

I (5]

RESULTS (1) N X

+135Q

Name Summary storey result

A

\ \V/ \\// \V

+4.500\

FL1

+0.000_

® Resultstable

\ Typeofloads Mass combinations v
Mass combinations CM1/1-2.65 v
FL3 >< /
/ Selection  All storeys v
+9.000\’ " : prawvalues @Y
Draw units (V;
FL2 \ Resulttype Storey data v
ACTIONS >»
</ Refresh Fs

T] Report preview

\

14

L]

Summary storey result
Storey data:

Eigen solution

Selection: All

Mass combinations : CM1/1 - 2.65

Name M X6 Y6 26
[t] [m] [m] [m]

FL1 13.5]| 4.157| 7.704 1.250
FL2 148.0 | 5.663| 6.350 4.500
FL3 148.0| 5.663| 6.350 5.000
FL4 1078 | 5.769| 6.240| 13.343

- Displacements & accelerations:

Displacements & Accelerations are available for eigenmodes and seismic load cases. The values of
displacement & acceleration components are given at the mass centre of each storey.

Results for mass combinations are raw, normalized results from modal analysis, without effect of
response spectrum.

Results for seismic load cases are values after modal superposition.
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92

+13.5Q0__
FL3

+9.000\

+4.500\

FL1

+0.000\1 o~

]
=

i
A
VY \/

[\ ]\

1

/
De+oom’r
\\\
/
7”00m,,..
\
/
5-7e~0;

7’/-‘\04»-;

P

Summary storey result

Storey Displacements:
Linear celculetion, Bxdreme: Member

v ADDITIONAL VALUES

LIMIT VALUES

9

RESULTS (1) N X
Name Summary storey res;lt .
Typeofloads Load cases v
Load cases SX v
Selection All storeys v
Extreme Member v

prawvalues @Y

Draw units (\/)
Resulttype Displacements v
Values u_x v

8818916

Selection: Al
Load cases @ SX
Name Uy Px Py Pz

[mm] [mm] [mm] [mrad] [mrad] [mrad]

FL1 1,1e-01 2,4e-02| 6,205 1,3e03| 24e03| 2,4e03

FLZ 5,7/e-01 1,7e-01| 5,2e02 9,1e03| 4,8e03| 9,0e03

FL3 1,7e+00 | 5,2e01| 7,1e02| 1,4e02| 68e03| 2,502

FL4 3,0e+00 0,2¢-01| 9,1e02 1,5¢-02| 7,2¢03| 4,3e02

Using the option ‘Additional values’ in the properties windows you can display more components:

+13.5

FL3

+9.0!

FL2

+4.5

FL1

+0.0

0. 40’"/8";

.OJom

480 m/s1o.

159 m /g

/]

-

A /\ I
\ VY V

-

l

RESULTS (1) AN X
Name Summary storey result o
Typeofloads Load cases v
Load cases SX v
Selection All storeys v
Extreme Member v

Draw values

Draw units (\D
Resulttype Accelerations v
Values Ax v

v ADDITIONAL VALUES

Y OD)

OB

ax OO

ay OO

az OO

LIMIT VALUES

Av min [m/eM]

n nnn
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Step 6: detailed storey results
Typical provided results are: internal forces, resultants per wall or per storey...
Mainly two types of results are available here:

- Internal forces in supporting members

The result can be displayed on different section levels:

o Top (section at the top of each storey)
o Middle (section at mid-height of the each storey)
o Bottom (section at the bottom of each storey)
o User defined
(&7
RESULTS (1) (AR
Name Detailed storey result |
Typeof loads Load cases v
Load cases SX v
Selection  Single storey v
Storey FL1 v
Section level Top v
Filter No v
System  Principal v
Extreme Global v
Drawvalues @)
DT i (‘/‘/ Diagram Precise
Location In nodes, avg. on macro \/ Draw diagram  Section plane
Resulttype Internal forces v Display total value (O )
Values on beams N v Display average value (O )
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Detailed storey result
Linear calculation, Extreme: Global, System: Principal

Selection: FL1

Load cases : SX

Columns:

Name Storey x ' z N Vy Vz Mx My Mz
[m] [m] [m] [kN] [kN] [kN] [kNm] [kNm] [kim]

B22 FL1 6.000 6.000| 4.500| 14.02| 0.26| 1.05 0.03 1.94 0.43
B37 FL1 12.000 0.000 | 4.500 6.87 0.25| 0.56 0.04 0.54 0.29
B40 FL1 6.000 12.000 | 4.500 497| 0.17 1.02 0.04 175 0.15

Walls:

Ny Ny Py my my Myy Vx Vy
[kN/m] [kN/m] [kN/m] [kNm/m] [kNm/m] [kNm/m] [kN/m] [kN/m]

4 FL1 12.000 | 10.000| 4.500 0.64 2.18 28.02 0.08 043 0.05 0.19 0.30
S7 FL1 0.000 8.000| 4.500 2.87 $8.55 1.94 0.03 1.59 1.00 0.35 4.92
S15 FL1 1.500 0.000| 4.500 3.74 45.62 52.97 0.02 0.11 0.22 0.48 0.08
S15 FL1 0.000 0.000| 4.500 1286| 323.53 7.66 0.48 0.64 0.04 184 1.88
S15 FL1 2.000 0.000| 4.500 0.92 4664 53.10 0.03 0.09 0.26 0.50 0.14
4 FL1 12.000 | 11.000| 4.500 4.32 .74 20.55 0.0 041 0.02 0.27 0.23
S7 FL1 0.000 8.500| 4.500 3.04 45.38 3.2 0.05 0.14 0.66 0.03 1.58
S15 FL1 3.500 0.000| 4.500 7.96 301.84 7.28 0.22 1.9 0.50 2.20 5.60
s7 FL1 0.000 | 10.500| 4.500 0.50 64.10 10.38 0.07 0.53 0.37 0.10 0.08
S10 FL1 2.000 | 12.000]| 4.500 32.69 232.94 2341 0.03 3.54 1.61 1.16 11.18

- Resulting forces (by member)
Location = by member: compute the resulting forces are computed for each wall member separately.

L
RESULTS (1) N X
Name Detailed storey result
Typeof loads Load cases v
Load cases SX v
Selection  Single storey v
Storey FL1 v
Section level Bottom v
Filter No v
System  Principal v
Extreme Global v
Drawvalues @)
Draw units E
Location Innodes, avg. onmacro
Resulttype Resulting forces v
Member grouping per member v
Values F_x v

Resulting forces in 1D members (columns) are identical to internal forces in 1D members.

Resulting forces in 2D members (walls) compute the resultant at the centre of each wall, according
to a dedicated local coordinate system, regardless of the System output setting. The coordinate
system that is used is the same as the LCS of a vertical rib placed in the middle of the wall. It is also
the same coordinate system that is used for integration strips.

The local X axis is vertical, upwards.

The local Z axis is identical to the Z LCS of the wall.

Y=2Z"X

~

In this way, resulting forces in walls can be easily displayed together, consistently with internal forces
in columns on a single drawing.
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Resulting forces (by storey)

Location = by storey: the resulting forces are computed for each storey, considering all the supporting

members at once; 1D (columns) and 2D members (walls) are taken into account together

-
|

RESULTS (1)

N X

Nam

Type of loads

e Detailed storey result

Load cases SX

Selectio

Load cases

n Single storey

Storey FL1

Section level

Filter No

System

Extrem

Draw values

Draw units

Locatio

Result type

Bottom

GCS

e Global

Member grouping per

Values F_x

Total vertical forces in all storeys:

/

+1350Q__

FL3

+9.000_ |

+4.500\1

FL1

+o.ooq L~

R ¥

VAV,

=
=

<]
<]

- OOOkN/

AN
AW,

ARV

L3

Detailed storey result

Linear calculation, Extreme: Member, System: GCS

Selection: Al
Load cases : SW

Resulting forces per storey

Name Storey x

[m]

' z
[m] [m]
2.250

\/

n Innodes, avg. on macro

Resulting forces

storey

Fu
[kN]

Fy
[knN]

CILCICILCICILCILCIKL

<1< <IKL

| RESULTS (1)

"N

Name

Typeof loads Load cases
Load cases SW
Selection  All storeys
Section level Middle
Filter No
System GCS
Extreme Member
Draw values
Draw units E
Location

Result type

Member grouping  per storey

Values F_z

| » ADDITIONAL VALUES
LIMIT VALUES

F_xmin [kN] 0.00

| Mx
[ki] [ kcim]

My
[kim ]

Detailed storey result

Resulting forces

Mz
[ kchim]

In nodes, avg. on macro

FL1 7.549 041 | 092 | -2938.11 | 3281.44| 3163.40 5.24
FL2 4.507 | 7.549 6.750| -1.00 | 0.65 | -1904.18 | 2187.60 | 2109.18 -0.53
FL3 4507 ]| 7.545| 11.250| -1.18| 0.69 -870.00 | 1093.24| 1054.57 -1.19

<

<

<l1<I<
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4.3. Accidental eccentricity (accidental torsion)

The accidental eccentricity accounts for inaccuracies in the distribution of masses in the structure. Design
codes usually take it into account as an additional eccentricity that is defined as a fraction of the size of the

structure.

In the Eurocode 8, the accidental eccentricity for a given floor is defined as 5% of the width of the floor
perpendicularly to the direction of the acting seismic action.

In SCIA Engineer, using the IRS condensed model allows introducing accidental eccentricity easily, since the

condensed model uses only one R-node per storey. The accidental eccentricity may be taken into account
either as real mass eccentricity or as additional torsion actions (simplified method according to the design

codes).
However, SCIA Engineer uses the simplified method using additional torsion moment.

Accidental eccentricity is added through static loading (acc. EN 1998-1 4.3.3.3.3)

MJA — 2024/08/23
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Example 04-2.esa

In SCIA Engineer, the accidental torsion can be accounted for in a seismic project using the IRS method.

Open the Load cases window and select one type of Accidental eccentricity:

B " Load cases

iR ER &« OO0 A

sw Name SX
DL Description
LL

Action type Variable

SX

SY Load group LG3
SX_AE - Accidental ec... Load type Dynamic
SY_AE - Accidental ecc... Specification Seismicity

4 Seismic action
Response spectrum FS1
Direction X
Rotation about Z axis [deg] 0.00
Factor X
FactorY ©
FactorZ ©

Acceleration factor 1

[

Overturning reference level [m] 0.000
4 Equivalent lateral forces
ELF method Disabled

4 Accidental eccentricity

Method Accelerations from modal superposition A

Eccentricity | Disabled
4 Modal superposition
Type of superposition
Unify eigenshapes
Filter on total mass ratio
Filter on minimal mass ratio
Use residual Mode
4 Signed results
Use dominant mode
Master load case None

Combination of mass groups CM1

Actions

New Insert Edit Delete

Linear distribution of accelerations
Distribution of accelerations from eigenshape
Accelerations from modal superposition

Copy all loads to another loadcase >>>

Delete all loads >>>

Close

The following methods are available for calculation of AE moments:
- Linear distribution of accelerations (EN 1998-1 4.3.3.3.3 and formula (4.11) )
- Distribution of accel. from eigenshape (EN 1998-1 4.3.3.3.3 and formula (4.10) )

98

- Accelerations from modal superposition
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Once the accidental eccentricity is selected, a new AE load case and also a new load group are automatically

created:
B Load cases >
HEEFES &~ O wl@ A .y
- Mame SX_AE
- Description Accidental eccentricity for SX
IE-;I}-{ Action type Variable
SX_AE
SY Load group =A_

ISH_AE - Accidental ec... |

SY_AE - Accidental ecc...

Load type Static
Specification Seismic accidental eccentricity
Duration Shert
Master load case SX

Actions
Delete all loads ===
Copy all loads to another loadcase ===
Mew Insert Edit Delete Close
5 Load groups x
HEEFE a2 O Wl A v Y
LG1 MName SX_AE
LG2 Relation Exclusive
:LGS Load Seismic Accicdental Eccentricity
ISK_AE
SY_AE
MNew Insert Edit Delete Close
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Chapter 6: ANNEX A - EARTHQUAKE MAGNITUDE

To assess the magnitude of earthquakes, a scale to describe the energy released during an earthquake was
developed by Richter in the 1930s. This is named the Richter scale and it is the most common scale used
today to describe earthquakes [26].

The magnitude of an earthquake on the Richter scale is determined by a so-called Wood-Anderson
seismograph maximum amplitude, where M = log(a), and a is the maximum amplitude [um] at a 100 km
distance from the epicentre.

The seismic action on buildings cannot be described by the Richter scale magnitude and this may not be used
in the design. However, Housner in 1970 developed empirical relationships between the magnitude, the
duration and the peak ground acceleration to be used in design:

Magnitude on the Peak ground Duration (s)
Richter scale acceleration (% g)
5,0 9 2
5,5 15 6
6,0 22 12
6,5 29 18
7,0 37 24
7,5 45 30
8,0 50 34
8,5 50 37
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In this annex, some numerical values for structural damping are given.

71. EC8 — Part 6
EC8 part 6 (ENV 1998-6:2003 Annex B) suggest the following values for the damping ratio:

Structural material Damping ratio ¢
Steel elements 1% - 4%
Concrete elements 2% - 7%
Ceramic cladding 1,5% - 5%
Brickwork lining 3% -10%

7.2. EC1 - Part 2-4

Other values for damping are suggested by EC1 — part 2-4 (ENV 1991-2-4: 1995 Annex C).
The fundamental logarithmic decrement d is given by:
d = ds + da + dd
Where:
- ds: fundamental structural damping
- da: fundamental aero dynamical damping
- da: fundamental damping due to special devices

The structural damping is given by:
dS = al. n1 + b1

ds 2 8min
Where:
- n,: fundamental flexural frequency.
- ay, by, 8nin: parameters given in the following table for different structural types.

Structural type a; b, 8 min
Reinforced concrete buildings 0,045 0,030 0,080
Steel buildings 0,045 0 0,050
Mixed structures : concrete + steel 0,080 0 0,080
Reinforced concrete towers 0,050 0 0,025

Lattice steel towers 0 0,030 0
Reinforced concrete chimneys 0,075 0 0,030

Prestressed steel cable 0 0,010 0

Unlined welded steel stacks 0 0,015 0

Steel stack with one liner or thermal insulation 0 0,025 0

Steel stack with two or more liners 0 0,030 0

Steel with brick liner 0 0,070 0

Coupled stacks without liner 0 0,015 0

Guyed steel stack without liner 0 0,040 0

Welded 0 0,020 0

Steel bridges High resistance bolts 0 0,030 0

Ordinary bolts 0 0,050 0

) Prestressed without cracks 0 0,040 0

Concrete bridges  yiin cracks 0 0,100 0

. Parallel cables 0 0,006 0

Bridge cables Spiral cables 0 0,020 0
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For example, for a steel building with first frequency of 3Hz, the logarithmic decrement is:

0,045*3 +0=0,135 (> 0,05)

7.3. Reference [22]

Other values for the logarithmic decrement are suggested by the reference [22]:

Structural material

Logarithmic decrement

Steel (welded) 0,025
Reinforced or prestressed concrete 0,056
Brickwork 0,25
Wood 0,13

In this reference, preliminary formulas can also be found for aerodynamic damping and damping caused by

the foundation.

106
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Chapter 8: ANNEX C - MANUAL CALCULATIONS SPECTRAL ANALYSIS

8.1. Spectral analysis of 3-2 example (example C-1)

In this paragraph, the seismic results of SCIA Engineer are calculated manually to give a clear understanding
of the applied formulas. All formulas can be found in the paragraph “Calculation Protocol” of this chapter.

The reference project is not completely the same as the one described in example 3-2. The differences will be
shown first before starting the manual calculation.

8.1.1 Seismic load case

The properties which have been used in the seismic load case can be seen here:

B’ Load cases X

g tErEm «» D@D A .Y
LC1 - Deal load | o [0
1625 Description SX
Action type Variable v
Load group LG2 et
Load type Dynamic v
Specification Seismicity v
4 Seismic action
Response spectrum Manuel Y .
Direction X v
Rotation about Z axis [deg] 0-00
Factor X 1
FactorY 0
FactorZ 0
Acceleration factor 0.35
Overturning reference level [m] 0.000

4 Equivalent lateral forces

ELF method Disabled v
4 Accidental eccentricity
Method Disabled v
4 Modal superposition
Type of superposition SRSS v
Unify eigenshapes

Filter on total mass ratio
Filter on minimal mass ratio
Use residual Mode
4 Signed results
Use dominant mode
Master load case None v

Combination of mass groups CM1 v

Actions
Delete all loads  >>>
Copy all loads to another loadcase  >>>
New | Insert | Edit Delete Close

A different acceleration factor has been used. This reduces the accelerations given by the spectrum.
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8.1.2 Spectrum

A manual seismic spectrum is used:

® Seismic spectrums X
E-IEBIFE «a2 O 30 A vY
Manuel
m/s"2
14_
125
Name Manuel 12 s BN
Type drawing Period (7
4 f[Hz]; T[s]; a[... 10
1 [Hz,s,m/s"2] 0.33/3.03/0.466 1
2 [Hz,5,m/s*2] 0.50 /2.00 /0.560 -
2 [Hz,5m/sh2] 1.00 / 1.00 /0.890 1
4 [Hz,s,m/s"2] 1.49/0.67/1.165 06
5 [Hz,5,m/s*2] 1.67/0.60 / 1.250 ]
6 [Hz,5,m/s"2] 6.67/0.15 [ 1.250 63
7 [Hz,5,m/s"2] 100.00/0.01/1.0¢ 7
8 [Hz,5,m/s"2] 1000.00 /0.00 /0.¢ i3
s
0.0
10 ‘
< wy < wy < w < wy
=) (=) — - o~ o~ [ o
New Insert Edit Delete OK

8.1.3 Finite element mesh and solver setup

The finite element mesh has not been refined:
7 Mesh setup

Name MeshSetupl
Average number of 1D mesh elements on straight 1D members 1
Average size of 1D mesh element on curved 1D members [m] 0.200
Average size of 2D mesh element [m] 1.000
Connect members/nodes

Qatiin far rannarctinn Af chriirbural antitiae

The solver also has not been changed to neglect shear deformations.

5 Solver setup

Name SolverSetupl
Specify load cases for linear calculation
4 Advanced solver settings
4 General
Neglect shear force deformation ( Ay, Az>> A)
Neglect shear center eccentricity
Type of solver Direct
Minimal number of sections on member 10
Warning when maximal translation is greater than [mm] 1000.0
Warning when maximal rotation is greater than [mrad] 100.0
P Initial stress
4 Dynamics
Type of eigen value solver Lanczos
Number of eigenmodes 2
Modal mass matrix Diagonal
Use IRS (Improved Reduced System) method
P Mass comp ts in lysi
P Soil

R

108

MJA — 2024/08/23



8.2. Manual calculation of 3-2 example (example C-1)
8.2.1 Verification of modal participation factors

First, the Modal Participation Factors of the Eigen Frequency Calculation Protocol are verified.

As shown in the Deformation of Nodes, the normalized modal shapes for both modes were the following:

Displacement of nodes Displacement of nodes
Modal shapes are normalzed, so that the generalzed Modal shapes are normalzed, so that the generalzed n
Mass combination: CM1/1 - 0.53 Mass combination: CM1/2 - 3.43
Extreme: Node Extreme: Node
Selection: All Selection: All
Name Case Ux Uz Name Case Ux Uz
[mm] [mm] [mm] [mm]
N1 CM1/1 - 0.53 0.0 0.0 N1 CM1/2 - 3.43 0.0 0.0
N2 CM1/1 - 0.53 6.1 0.0 N2 CMY/2 - 3.43 25.7 0.0
N3 CM1/1-053 | -20.8] 0.0 N3 CM1/2 - 3.43 30.5 0.0
N4 CM1/1-053 | -39.1] 0.0 N4 CM1/2-343 | -20.2] 0.0
0,039111 —0,020233
(0.} = 0,020803 (0} = 0,030451
#1574 0,006128 2 0,025755
0 0

Participation factor:
Vi) = {Pi" * {m}

Yx,) = 0,039111 = 500 + 0,0200803 * 500 + 0,006128 x 500 = 33,021
Yx2) = —0,020233 % 500 + 0,030451 * 500 + 0,025755 = 500 = 17,984

Effective mass:
Mier,) = Vi)

My et (1) = (33,021)? = 1090,39
Mx,ef,(z) = (17;984)2 = 323,42

Participation mass ratio:

Lo = Micef,j)
Ky =
o Mk,tot
1090,39

Ly =27 — 07269
%1 7500 + 500 + 500

323,42

Lyy=——"—=10,2156
k0) = 500 + 500 + 500

These results correspond to the results obtained by SCIA Engineer.
They can be found in SCIA Engineer in the Calculation protocol (Eigen frequency):

Relative modal masses

Mode iega [rad, Period Freq. M ™ Tz Wa/Waa Wa/Wyee Wa/Wae g /Wae v r/W o zg/Waa
[s] [Hz]

1 3.30085 1.90 0.53| -33.0211 0.0000 0.0000 0.7269 0.0000 0.0000 0.0000 0.2720 0.0000

2 21.5274 0.29 3.43 17.9865 0.0000 0.0000 0.2157 0.0000 0.0000 0.0000 0.5286 0.0000

0.5426 0.0000 0.0000 0.0000 0.8006 0.0000
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8.2.2 Details of the seismic calculation

Next, the details of the seismic calculation found in the Calculation Protocol for the Linear Calculation are
verified:

Freq. Damp ratio Damp coef. Wi/Wtot Sax Say Saz G(3) Fx Fy Mx My

[Hz] [-1 [m/s?] [m/s?] [m/s?] [-] [kN] [kN] [kNm] [kiNm]
1 0.53 0.05 1 0.73 0.207 0.000 0.000| -0.63 0.23 0.00 0.00 -2.26
2 3.43 0.05 1 0.22 0.438 0.000 0.000 0.02 0.14 0.00 0.00 -0.41
Level= 0.00 0.54 0.27 0.00 0.00 2.29

The spectral acceleration Sax for both modes is calculated using the defined seismic spectrum.

The spectrum for ground type B with a behaviour factor q = 2 gives the following values for Sqa(T)/a:

Frequency[Hz] Period[s] Acceleration[m/s*2]
1 0.33 3.03 0.47
2 0.50 2.00 0.56
3 1.00 1.00 0.89
4 1.4 0.67 1.17
5 1.67 0.60 1.25
6 6.67 0.15 1.25
7 100.00 0.01 1.00
8 |1000.00 | 0.00 0.00
*  0.00 0.00 0.00

The first mode has a period T1 of 1,9036 s => Sq(T1)/a = 0,5918 m/s?
The second mode has a period Tz of 0,2920 s => Sd(T2)/a = 1,25 m/s?2

In this example, the coefficient of acceleration « was 0,35
=> Sax,1) = 0,5918m/s? * 0,35 = 0,2071 m/s?
=> Sax,2)= 1,25m/s? * 0,35 = 0,4375 m/s?

These results correspond to the results obtained by SCIA Engineer. The small deviation is due to the fact that
SCIA Engineer uses more decimals. In the further analysis, the spectral accelerations of SCIA Engineer are
used.

Mode coefficient:

G = Sak() * YkG)

10 R A
)

0,2019 % 33,021

Gy (1) = e = 0,6119
@) (3,3007)?

. _04380x17984
BT (2151922

These results correspond to the results obtained by SCIA Engineer.
The necessary intermediate results are calculated so the response of each mode can now be obtained.

First, for each mode, the lateral force in each node can be calculated. These lateral forces can then be used
to calculate the base shear and overturning moment.
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Mode 1:

Lateral force in node i:
Fikm = Mikg) * Sak * Yo * Pik)

0,2019m

Fyx (1) = 500kg * —z * 33,021 % 0,039111 = 130,38N
0,2019m

F3 1) = 500kg * — * 33,021 * 0,020803 = 69,35N
0,2019m

Fyx 1) = 500kg * —z * 33,021 * 0,006128 = 20,43N

Fl,x,(l) = ON

Frg = Z Fika)
i

Fy 1) = 130,38N + 69,35N + 20,43N = 220,129N = 0,2201kN

Base shear force:

Overturning moment in node i:
Mik) = Fikg * zi

Myy 1) = —130,38N * 12m = —1564,50Nm
M3y 1) = —69,35N * 8m = —554,77Nm
M,y.1) = —20,43N * 4m = —81,71Nm

Ml,y,(l) = O0ON.m

My, = Z Mi,g)
i

My 1y = —1564,50Nm — 554,77Nm — 81,71Nm = —2200,89Nm = —2,2009kNm

Overturning moment:

Note:

In this mode, all lateral forces in the nodes are oriented the same way. The lateral loads in the nodes are in
this case oriented in the negative X-direction so the Base Shear Force is oriented in the positive X-direction.
The lateral loads in the nodes thus produce a negative Overturning Moment around the Y-axis. An example of
this principle can be found in reference [26].

However, as stated in the previous chapters, the signs have no absolute importance since vibration
amplitudes always occur on both sides of the equilibrium position.
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Mode 2:

Lateral force in node i:
Fik = Mik) * Sak@ * Yra) * Pikg)

0,4380m
Fax(2) = 500kg x ———— % 17,984 x —0,020233 = —79,69N
0,4380m
Fax(2) = 500kg * ———— + 17,984 + 0,030451 = 119,93N
0,4380m
Fax(z) = 500kg * ———— + 17,984 + 0,025755 = 101,44N
Fl,x,(Z) = ON

Base shear force:
Frg = Z Fika)
i
FX,(Z) = —-79,69N + 119,93N + 101,44N = 141,68N = 0,1417kN

Overturning moment in node i:
Mikg) = Fiko * zi

Mgy 2) = —79,69N * 12m = —956,25Nm

Msy 2 = —119,93N * 8m = —959,45Nm

M, 5,2 = —101,44N * 4m = —405,74Nm
Ml,y,(z) = ON.m

My = Z M Gy
i

My 2y = 956,25Nm — 959,45Nm — 405,74Nm = —408,94Nm = —0,4089kNm

Overturning moment:

To obtain the global response, the modal responses need to be combined. In this example the SRSS-method
was used:

Fy = \[ (Fe)” + (Fey)” = /(0,2201kN)? + (0,1417kN)? = 0,2618kN

M, = \/ (My,1y)” + (My, )" = /(—2,2009kN)2 + (—0,4089kN)? = 2,238kN. m

These results correspond almost exactly to the results obtained by SCIA Engineer. We will show them again:
Damp o Damp coef

1 0.53 0.05 0.73 0.207 0.000 0000| 063§ 023 0.00 0.00 -2.26

1
2 343 0.05 1 0.22 0.438 0.000 0.000 0.02 0.14 0.00 0.00 -0.41
Level= 0.00 0.54 0.27] 0.00 0.00 2.29

As specified in the theory, these same principles can now be used to calculate the displacements and
accelerations for each mode. These modal responses can then be combined again to obtain the global
displacements and accelerations of the structure.
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Mode 1:

Displacement in node i:
Uik () = Gig)- Pik()

Uyx 1y = 0,6119 % 0,039111 = 0,02393m = 23,93mm

Uz, 1) = 0,6119 % 0,020803 = 0,01273m = 12,73mm

Uy 1) = 0,6119 % 0,006128 = 0,00375m = 3,75mm
Uj x (1) = Omm

Acceleration in node i:
. — 2
Uik ) = 00 Gk Pika)

Ay (1) = 3,3007% % 0,6119 % 0,039111 = 0,26073m/s* = 260,73mm/s?

a35(1) = 3,30072 + 0,6119 * 0,020803 = 0,13868m/s> = 138,68mm /s>

azx1) = 3,30072 % 0,6119  0,006128 = 0,04085m /s = 40,85mm /s
ayx (1) = 0mm/s?

Mode 2:

Displacement in node i:
Uik ) = G Sk

Uy 2) = 0,0170 * (—0,020233) = —0,00034m = —0,34mm
Usx2) = 0,0170 * 0,030451 = 0,00052m = 0,52mm
Uz (2) = 0,0170 * 0,025755 = 0,00044m = 0,44mm
Uy 5 (2) = Omm

Acceleration in node i:
.. — 2
Uik = @) Gk.(i)' (bi.k,(i)

agx(2) = 21,5192% % 0,0170 * (—0,020233) = —0,15928m/s* = —159,28mm/s?

Azx(2) = 21,51922% % 0,0170 * 0,030451 = 0,23972m/sz = 239,72mm/sz
Ay () = 21,51922 % 0,0170 * 0,025755 = 0,20275m/s? = 202,75mm/s?
ayx(2) = 0mm/s?

To obtain the global response, the modal responses need to be combined. In this example the SRSS-method

was used.

Displacements:

Uy = \[ (Uax)” + (Wan) = /(23,93)7 + (=0,34) = 23,93mm
Ugy = J(ua,x,(1))2 + (Usx() = /(12,73)2 + (0,52)% = 12,74mm

2 2
Upy = \/ (uzx1)” + (uzx) =+/(3,75)? + (0,44)? = 3,78mm

ul,x =0

Accelerations:

Ay = \[ (aax)” + (aaxc)” = +/(260,73)2 + (—159,28)% = 305,53mm/s’

Agy = J (a3xm) + (asx)” = +/(138,68)2 + (239,72) = 276,94mm /s>

Ay = \/ (azxw)” + (azx()” = +/(40,85)2 + (202,75)2 = 206,82mm/s>

a;x = Omm/s®

MJA —2024/08/23

113



Advanced Training — Dynamics

In SCIA Engineer, in 32-bit version and v16 post-processing environment, a specific result menu Seismic
Detailed was designed to view these modal displacements and accelerations.

In the Properties Window, the options for viewing the modal results can be set:

Tree v b X Properties v 3 X
T Main |8 Results X Seismic detailed (1) - a7
¥ Displacement of nodes Sgea
Def d Struct
Gl e Name Seismic detailed
g 3D displacement
A 3D stress Selection All =
& Supports Type of loads Load cases .
= Beams Load cases LC2 - Séisme X -
80 Dyna.mics ) Filter No -
&y Eigen frequencnes Modal results Accelerations )
P} Acceleration of nodes .
B SSmic ddsied Evaluation for Sum -
[ Bill of material ' Values Deformed mesh -
(57 Calculation protocol Extreme No -

- Inthe field « Load Cases », a seismic load case can be selected.
- The filed « Modal results » allow choosing between the displacements or accelerations.

-« Evaluation for » is used to specify which results need to be shown: the results for a specific
Eigenmode, the results for All Eigenmodes or the global, Summarized results.

The results for each mode and the summarized results are shown on the next pages for both the displacement
and the accelerations.

Displacements:
Mode 1:

Seismic detailed

Linear calculation, Extreme : No
Selection : All

Load cases : LC2

Modal results : Displacements
Evaluation for : Eigenmode 1

Node X Y z Ux Uy Uz Fix Fiy Fiz
[m] [m] [m] [mm] [mm] [mm] [mrad] [mrad] [mrad]
N1 0.000 0.000 0.000 0.0 0.0 0.0 0.0 0.0 0.0
N2 0.000 0.000 4.000 3.7 0.0 0.0 0.0 1.7 0.0
N3 0.000 0.000 8.000 12.7 0.0 0.0 0.0 2.6 0.0
N4 0.000 0.000 12.000 23.9 0.0 0.0 0.0 29 0.0
Mode 2:

Seismic detailed

Linear calculation, Extreme : No
Selection : All

Load cases : LC2

Modal results : Displacements
Evaluation for : Eigenmode 2

N1 0.000 0.000 0.000 0.0 0.0 0.0 0.0 0.0 0.0
N2 0.000 0.000 4.000 0.4 0.0 0.0 0.0 0.1 0.0
N3 0.000 0.000 8.000 0.5 0.0 0.0 0.0 -0.1 0.0
N4 0.000 0.000 12.000 -0.3 0.0 0.0 0.0 -0.3 0.0
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Summarized:

Seismic detailed

Linear calculation, Extreme : No
Selection : All

Load cases : LC2
Modal results : Displacements
Evaluation for : Sum

] 1
N1 0.000 0.000 0.000 0.0 0.0 0.0 0.0 0.0 0.0
N2 0.000 0.000 4.000 3.8 0.0 0.0 0.0 1.7 0.0
N3 0.000 0.000 8.000 1277 0.0 0.0 0.0 2.6 0.0
N4 0.000 0.000 12.000 239 0.0 0.0 0.0 29 0.0
Accelerations:
Mode 1:
Seismic detailed
Linear calculation, Extreme : No
Selection : All
Load cases : LC2
Modal results : Accelerations
Evaluation for : Eigenmode 1
Case Node X Y z Ax Ay Az Alphax Alphay Alphaz
[m] [m] [m] [mm/s2] [mm/s2] [mm/s2] [mrad/s2] [mrad/s2] [mrad/s2?]
LC2 N1 0.000 0.000 0.000 0.0 0.0 0.0 0.0 0.0 0.0
LC2 N2 0.000 0.000 4.000 40.8 0.0 0.0 0.0 18.8 0.0
LC2 N3 0.000 0.000 8.000 138.6 0.0 0.0 0.0 28.6 0.0
1C2 N4 0.000 0.000 12.000 260.7 0.0 0.0 0.0 314 0.0
Mode 2:
Seismic detailed
Linear calculation, Extreme : No
Selection : All
Load cases : LC2
Modal results : Accelerations
Evaluation for : Eigenmode 2
Case Node X Y z Ax Ay Az Alphax Alphay Alphaz
[m] [m] [m] [mm/s2] [mm/s2] [mm/s2] [mrad/s2] [mrad/s2] [mrad/s2]
LC2 N1 0.000 0.000 0.000 0.0 0.0 0.0 0.0 0.0 0.0
LC2 N2 0.000 0.000 4.000 202.9 0.0 0.0 0.0 57.1 0.0
LC2 N3 0.000 0.000 8.000 239.9 0.0 0.0 0.0 =51.2 0.0
1€2 N4 0.000 0.000 12.000 -159.4 0.0 0.0 0.0 -123.6 0.0
Summarized:
Seismic detailed
Linear calculation, Extreme : No
Selection : All
Load cases : LC2
Modal results : Accelerations
Evaluation for : Sum
Case Node X Y z Ax Ay Az Alphax Alphay Alphaz
[m] [m] [m] [mm/s2] [mm/s2] [mm/s2] [mrad/s2] [mrad/s2] [mrad/s2]
LC2 N1 0.000 0.000 0.000 0.0 0.0 0.0 0.0 0.0 0.0
LC2 N2 0.000 0.000 4.000 206.9 0.0 0.0 0.0 60.1 0.0
LC2 N3 0.000 0.000 8.000 277.1 0.0 0.0 0.0 58.6 0.0
LC2 N4 0.000 0.000 12.000 305.5 0.0 0.0 0.0 127.5 0.0
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In 64-bit version, we have only the results of displacements — sum:

Displacement of nodes

Linear calculation

Load case: LC2

Extreme: Node

Selection: Al
Name Case Ux Uz <, Utoeat

[mm] [mm] [mrad] [mm]

N1 LC2 0.0 0.0 0.0 0.0
N2 LC2 3.9 0.0 1.8 3.9
N3 LC2 13.1 0.0 2.7 13.1
N4 LC2 24.6 0.0 3.0 24.6

When comparing the results of the manual calculation and those obtained by SCIA Engineer, it is clear that

both calculations correspond.

As specified in the theory, when using the CQC-method, a damping spectrum needs to be defined. To illustrate
this, the above example is calculated again, but now using the CQC-method for the modal combination.

116

MJA — 2024/08/23



Chapter 9: ANNEX D - MISSING MASS IN MODES

As mentioned before, the sum of the effective modal masses for the modes taken into account must amount
to at least 90% (EN 1998-1-1 art.4.3.3.3). The user can try to achieve this with the following possibilities:

- Take more natural frequencies into account

- Assign mass more to nodes/connection instead of beams (to avoid local eigenmodes).

The mass which has not been taken into account (for example, if the effective modal mass is 90%, then there
is 10% not taken into account), can be treated in 3 possible different ways in SCIA Engineer:

4 Modal superposition
Type of superposition CQC \4
Damping [%] 5-00
Filter on total mass ratio
Filter on minimal mass ratio

Use residual Mode

The used method is set in each seismic load case and is again displayed in the linear calculation protocol.
Let’s take as example that the effective modal mass in a direction is 90%. Then how can the other 10% be
treated?
- Ifthe option « Use residual mode » is not ticked: in this case, the 10% would be ignored. We would
only take into account 90% of the mass of the structure to calculate the effects of an earthquake.
- If the option « Use residual mode » is ticked: in this case, a ‘fictive’ mode corresponding to the
combination of all missing modes can be calculated. But since these missing modes are over
different natural frequencies, the last found frequency will also be the natural frequency of this
mode. In the calculation, the forces in this mode will be calculated in the same way as in the other
modes.

In the following examples the differences are explained in detail.

In these projects the following general principle is used:

First of all, a seismic spectrum is introduced. For this spectrum the modal displacements are calculated for
each mode, in this case there are 2 modes. Afterwards, the displacements are transformed in real load cases.
For these 2 load cases the results of the internal forces and reactions can be asked. According to the specific
analysis method, the results are summed. On that way, one can compare these results with the output of the
internal forces of the seismic load case. This will be done with the following three types of ‘mass in analysis’.
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9.1 Spectral analysis example without « residual mode »

Example D-1.esa: spectral analysis without residual mode

If the option ‘Residual mass’ is not ticked, the standard calculation is used. In this case, the participation mass
from all modes is taken into account and the user has to consider the 90% rule of the Eurocode. In other words,
using this method it's important that the total amount of the masses in X, Y and Z are sufficient.

In the example, a structure (3mx6m), made of beams and columns with rectangular cross-sections (beams
cross-section 15*30 except B4 which is 20*60; columns cross-section 15x15 except B3 which is 20*60), is
subjected to dynamic forces. The members are manufactured in C25/30 according to EC-EN. The height of

each column is 5m.

Next, a seismic load case is introduced. The seismic spectrum acts in 3 directions. An acceleration of 2 m/s?
is given in function of the frequency.
The evaluation method SRSS is used together without the option ‘Residual mass’.

The eigen frequency analysis gives the following output:

Eigen frequencies

N f © ®? T
Hz] [1/s] [1/s3] [s]

Mass combination : CM1

1 2.05 12.90 166.40 0.43

2 2.39 15.03 225.81 0.42

Deformation for mass combination CM1/1-1,64:

&)

oo S

8g

B3

Uy Uz Dx Dy
[mm] [mm] [mrad] [mrad] [mrad]
N1 CM1/1 - 2.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00
N2 CM1/1 - 2.05 1.27| -15.15 -0.04 0.24 2.02 0.07 | 15.21
N3 CM1/1 - 2.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00
N4 CM1/1 - 2.05 0.78 | -15.15 0.04 034 0.15 0.08 | 15.17
NS CM1/1 - 2.05 1.27| -15.64 | -12.89 4.27 1.35 0.15 | 20.31
Né CM1/1 - 2.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00
N7 CM1/1 - 2.05 0.78 | -15.64 0.00 432 0.27 0.12 | 15.65
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Deformation for mass combination CM1/2-1,90:

B1

Feia
v
B3

Uy Uz Dx D, D:
[mm] [mm] [mrad] [mrad] [mrad]
N1 CM1/2 - 2.39 0.00 0.00 0.00 0.00 0.00 0.00 0.00
N2 CM1/2 - 2.39 13.37 | -19.69| -0.01 0.24 -0.61 4.27 | 23.80
N3 CM1/2 - 2.39 0.00 0.00 0.00 0.00 0.00 0.00 0.00
N4 CM1/2 - 2.39 0.43 | -19.69 0.02 0.24 -0.08 4.55 | 19.69
NS CM1/2 - 2.39 13.37 9.32 7.12 -2.35 -0.80 473 | 17.78
Né& CM1/2 - 2.39 0.00 0.00 0.00 0.00 0.00 0.00 0.00
N7 CM1/2 - 2.39 0.43 9.32 0.00 -2.40 0.07 3.55 9.33

The masses of the participating nodes (N2, N4, N5 and N7) are needed. The mass is attributed to the end
nodes of each member.

N4
N7
N3
.
N
e N6

Calculation of mass X for N2:
Mass X = 2500kg/m3 * [(2,5 * 0,15 * 0,15) + (3 * 0,3 * 0,15) + (1,5 * 0,3 * 0,15)]

= 646,875 kg
The total mass matrix is:
Node Mass x Mass y Mass z
(kg) (kg) (kg)

N2 646,875 646,875 646,875

N4 646,875 646,875 646,875

N5 787,5 787,5 787,5

N7 1537,5 1537,5 1537,5

Total 3618,75 3618,75 3618,75

The modal participation factor is calculated as:
Yiq) = (D" IVigy = (i} {m}
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Calculation of y, for mode 1:

0 0
.(_0,001267\. I(646,875\I
| R
{bxn} = { —0,000778 } and  {m}= { 646,875 }
1 —0,001265 1 1 7875 1
| o | | o |
k—0,000777J k 1537,5 )
So:
Yx) = —0,001267 = 647 — 0,000778 * 647 — 0,001265 = 788 — 0,000777 * 1538
YX,(l) = —3,514
The participation factor matrix is:
)] Yx Yy Yz
Units (kg'2) (kg'”2) (kg'?2)
1 -3,514 55,959 10,158
2 20,115 -3,812 5,614

Out of this matrix the effective masses can be calculated:
Metk,) = Vi)

Calculation of Mef for mode 1 in direction x:

Mgy 1y = —3,514% = 12,346

(J) Mef.x Mef,y Mef.z
Units (kg) (kg) (kg)

1 12,346 3131,374 103,182

2 404,603 14,533 31,517

The formula for the participation mass ratio is as follows:

Lo Megk )
k0 = Motk
12,346

Ly = ——— = 0,0034
k(1) ™ 3618,75

(i) Ly Ly L,
Units (-) (-) (-)

1 0,0034 0,8653 0,0285

2 0,1118 0,0040 0,0087

The acceleration response spectrum S has the constant value of 2m/s? :

(i) Sy Sy S,
Units (m/s2) (m/s?) (m/s?)
1 2 2
2 2 2 2

Calculation of mode coefficient in each direction:
_ Sak@) * Y@

Grgy = 2
wE)
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For example for direction x and mode 1:

2% —3,514
GX,(l) = —166,4— = —0,042
() Gx Gy G: G
Units (m*kg'?) (m*kg'?) (m*kg'?) (m*kg'?)
1 -0,042 0,673 0,122 0,7524
2 0,178 -0,034 0,050 0,1941

Now, the lateral forces can be calculated in each node:

= i _ 2
Fi) = Mikg) * Uik = Mixg) * Go) * Pikg) * @)

As example, this is calculated for node 2 in direction X:

Fzx(1) = 646,875 * 0,7524 * (—0,001267) * 166,4 = —102,6N

Mode1
Node Fx (1) Fy (1) Fz (1)
(N) (N) (N)
N2 -102,6 1227,3 3,4
N4 -63,0 1227,3 -2,9
N5 -124,7 1541.8 12711
N7 -149.6 3010,0 0,2
Total -439,9 7006,3 1271.,8
Mode2
Node Fx (2) Fy (2) F2 (2)
(N) (N) (N)
N2 379,1 -558,3 0,3
N4 12,2 -558,3 0,6
N5 461,4 321,6 245,8
N7 29,0 627,8 -0,1
Total 881,7 -167,1 246,1

The shear forces in direction X, Y and Z:

For mode 1 in direction x:

Froy = Z Firont
i

—439,9

The overturning moment in each node for each direction is:

FX,(l) = W = —0,4399kN
() Fx Fy Fz
Units (kN) (kN) (kN)
1 -0,4399 7,0063 1,2718
2 0,8817 -0,1671 0,2461
Total 0,99 7,01 1,30

Miia) = Fikg * %

Mn2x,(1) = Fnzy,1) * (height — overturning height)
Mnzx(1) = 1227,3N * (5m — Om)
Myz 1) = —6136,4N. m
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The other values are:

Mode1
Node Mx (1) My (1)
(N.m) (N.m)
N2 -6136,4 513,1
N4 -6136,4 3151
N5 -7709,0 623,6
N7 -15049,9 747.9
Mode2
Node Mx (2) My (2)
(N.m) (N.m)
N2 2791,4 -1895,4
N4 2791,4 -60,8
N5 -1608,1 -2307,1
N7 -3139,2 -145,2

The sum of the moments for each node gives the overturning moment in base:

() M, M,

Units (kN) (kN)
1 35,0317 2,1997
2 0,8355 -4,4085

Total 35,04 4,93

The moments for each separate mode are combined with the SRSS-method.
Calculation of the modal displacement:
Uik () = Gy * P

For instance for node 2 in direction X and first mode:
{Gy} = {0,7524} and  {Ppnzxm} ={—0,001267}
So:
Uz 1y = (0,7524 * —0,001267) * 1000 = —0,95mm

Other values are:

Mode1
Node Ux Uy Uz
(mm) (mm) (mm)
N2 -0,95 11,40 0,03
N4 -0,59 11,40 -0,03
N5 -0,95 11,77 9,70
N7 -0,58 11,77 0,00
Mode2
Node Ux Uy Uz
(mm) (mm) (mm)
N2 2,60 -3,82 0,00
N4 0,08 -3,82 0,00
N5 2,59 1,81 1,38
N7 0,08 1,81 0,00
Total
Node Ux Uy Uz
(mm) (mm) (mm)
N2 2,76 12,03 0,03
N4 0,59 12,03 0,03
N5 2,76 11,90 9,80
N7 0,59 11,90 0,00
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Calculation of the modal acceleration:

- — 2
Uik, = 00 * Gg) * Pi)

For instance for node 2 in direction X and first mode:

linzx (1) = —0,95 * 166,4 = —158,6mm/s”

Mode1
Node ax ay az
(mm/s?) (mm/s?) (mm/s?)
N2 -158,6 1897,2 5,3
N4 -97,4 1897,2 -4,5
N5 -158,4 1957,8 1645,2
N7 -97,3 1957,7 0,1
Mode2
Node ax ay az
(mm/s?) (mm/s?) (mm/s?)
N2 586,0 -863,0 -0,4
N4 18,8 -863,0 1,0
N5 585,9 408,4 312,1
N7 18,9 408,4 0,0
Total
Node ax ay az
(mm/s?) (mm/s?) (mm/s?)
N2 607,1 2084,3 5,3
N4 99,2 2084,3 4,6
N5 606,9 2000,0 16441
N7 99,1 1999,9 0,1

Next, the displacements are inputted on the structure by means of a load case:
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INPUT TABLE

4 Name
3 TRS1
2 TRS2
3 TRS3
4 TRS4
5 TRSS
6 TRS6
7 TRS7
8 TRS8
9 TRS9
10 TRS10
11 TRS11
12  TRS12
13  TRS13
14 TRS14
15  TRS15
16 TRS16
17  TRS17
18 TRS18

Direction Reference
V| Relative
/| Relative
/' Relative
V| Relative
\/ | Relative
V| Relative
V| Relative
V| Relative
V| Relative
Relative
v/ Relative
| Relative
\/ | Relative
| Relative
V| Relative
V| Relative

V| Relative

N[=<|=<|=<|=<|[>[5]|>x|x|N|[=<|=<|=|=<|>]|>]x]>x
<

| Relative

;r':"i Loads

v

Value ... Suppo...

2.60 Sn2
2.60 Sn5
0.08 Sn4
0.08 Sn7
-3.82 Sn2
-3.82 Sn4
181 Sn5
181 Sn7
138 Sn5
-0.95 Sn2
-0.95 Sn5
-0.59 Sn4
-0.59 Sn7
11.40 Sn2
11.40 Sn4
1177 Sn5
177 Sn7
9.70 SnS

A m Type here

Load case
LC4
LC4
LC4
Lc4
LC4
LC4
Lc4
LC4
LC4
LG
Lc3
LG
LG
LC3
LG3
Lc3
Lc3
LC3

m,
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For these load cases the following internal forces are computed:

Name dx Case N Vy Vz My M, M
[m] [kN] [kN] [kN] [kNm] [kNm] [kiNm]
Bl 0.000 |LC3 438| -1.35| 036 0.01 -0.49 3.44
Bl S.000 |LC3 4.38 -1.35 0.36 0.01 1.29 -3.30
B2 0.000 |LC3 -3.73| -1.35| -0.04 0.01 0.12 3.44
B2 5.000 |LC3 -3.73] -135]| -0.04 001| -0.06| -330
B3 0.000 |LC3 0.62| -4.32| -0.78 0.28 6.54| 18.85
B3 5.000 |LC3 0.62 -4.32 -0.78 0.28 2.65 -2.73
B4 0.000 |LC3 0.00 0.35 0.08 -4.43 -1.48 -0.40
B4 3.000 |LC3 0.00 0.35| 0.08 -4.43 -1.24 0.63
BS 0.000 |LC3 0.00| -0.12| -1.19 1.48 2.69 0.35
BS 6.000 |LC3 000| -0.12| -1.18 14| -443| -0.40
BS 0.000 |LC3 0.00| -0.12| 0.54 1.49 -1.46 033
B6 6.000 |LC3 0.00 -0.12 0.54 1.4% 1.78 -0.36
B7 3.000 |LC3 0.00 0.23| -3.19 -1.40 -4.80 0.324
B7 0.000 |LC3 0.00 0.23 -3.19 -1.40 4.78 -0.35
Name dx Case N Vy Vz My M, M
[m] [kN] [kN] [kN] [kfNm] [kNm] [kiNm]
Bl 0.000 |LC4 -0.27 0.46 0.36 -0.15 -0.88 -1.17
Bl 5.000 |LC4 -0.27 0.46| 036 -0.15 0.94 1.15
B2 0.000 |LC4 0.59 0.45 0.01 -0.16 -0.03 -1.17
B2 5.000 |LC4 0.59 0.46| 0.01 -0.16 0.04 1.15
B3 0.000 |LC4 -0.08| -0.77| 049| -2.26| -1.52 3.07
B3 S5.000 |LC4 -0.08 -0.77 0.43 -2.26 0.94 -0.76
B4 0.000 |LC4 0.00| -0.55| -0.08 -0.91 -0.25 -0.12
B4 3.000 |LC4 0.00 -0.55 -0.08 -0.91 -0.50 -1.78
BS 0.000 |LC4 0.00| -0.05| -0.33 0.25 1.04 0.20
BS 6.000 |LC4 000| -0.05| -0.33 025| -0.91 -0.12
B6 0.000 |LC4 0.00| -0.13 0.01 0.26 -0.06 031
B6 6.000 |LC4 0.00 -0.13 0.01 0.26 -0.03 -0.48
B7 0.000 |LC4 0.00 0.06 0.60 -0.10 -0.90 -0.05
B7 3.000 |LC4 0.00|] 0.06|] 0.60|] -0.10 0.89 0.14

According to the SRSS-method the following formula is used:
N

Riot = Z R%j)
=1

Take for instance the normal force in member B1:
Niot = /(4,38kN)2 + (—0,27kN)2 = 4,39kN

Nom dx Cas N Vy Vi M. M, M
[m] [ki] [kN] [ki] [kiim] [kiim] [kbtm]
Bl  |0.000 |l€2 | 4.39] 1.43] 051] ©015] 1.00| 3.63

B1 1.818 Lc2 439| 143| 0.51 0.15 0.27 1.04

B1 5.000 LC2 439 1.43| 051 0.15 1.59 3.50

Bl 2.500+ |LC2 43%| 143 051 0.15 0.40 0.07

B2 0.000  JLE2 3.78| 1.43| 0.04 0.16 0.13 3.63

B2 3.182 Lc2 378 1.43| 0.04 0.16 0.01 0.90

B2 2,500+ |LC2 3.78| 1.43| 0.04 0.16 0.03 0.07

B3 0.000 LC2 0.63| 438| 0.91 2.27 6.65| 19.08

83 5.000 L& 0.63]| 4.38| 091 2.27 2.83 2.82

B3 4.545 Lcz 0.63| 4.38| 091 2.27 3.09 0.86

B4 3.000 LE2 1.44| 0.65]| 0.12 4.53 1.32 1.88

B4 0.000 Lc2 144 | 0.65| 0.12 4.53 1.50 0.42

B5 2.308 LC2 0.24| 0.14] 1.23 1.50 0.29 0.10

B5 3.000-  JLC2 0.24 | 0.14] 1.23 1.50 0.87 0.05

BS 6.000 LE2 0.24]| 0.14| 1.23 1.50 4.53 0.42

B6 2.769 Lc2 0.27| 0.18] 0.54 1.51 0.06 0.06

86 6.000 LC2 0.27| 0.18| 0.54 1.51 1.77 0.60

87 1,500-  [LC2 0.04| 0.24]| 3.25 1.40 0.01 0.05

87 3.000 Lc2 0.04| 0.24| 3.25 1.40 4.88 0.38

These values correspond with the internal forces for the seismic load case in the project.
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The same can be done for the reactions:

Name Case Rx Ry Rz My M, M
[kN] [kN] [kN] [kNm] [kNm] [kNm]
Sni/N1 |LC3 036 | -135| -4.38 3.44 -0.43 0.01
Sné/N6é  |LC3 0.78]| -432| -0.62 18.85 6.54 0.28
Sn3/N3 |LC3 0.04 | -1.35 3.73 3.44 0.12 0.01
Name Case Rx Ry Rz My My M:
[kN] [kN] [kN] [kNm] [kNm] [kiNm]
Sni/N1 |LC4 -0.36 0.46 0.27 -1.17 -0.88 -0.15
Sné/N6 |LC4 049 | -0.77 0.08 3.07 -1.52 -2.26
Sn3/N3 |LC4 -0.01 046 | -0.59 -1.17 -0.03 -0.16

Calculation of the reaction for N1:
Ry = /(=0,36kN)? + (—0,36kN)2 = 0,51kN

Hom Cas R« Ry Rxe M "p [
[kH] [kH] [kh] [kNm] [ldim] [kiim]
Sn1/N1 [LC2 051| 1.43| 4.39 3.63 1.00 0.15
Sn2/N6 [LC2 091| 438| 0.63| 19.08 6.65 2.27
Sn3/N3  [LC2 0.04]| 1.43| 3.78 3.63 0.13 0.16

After verifying the results for the seismic load case, we can conclude that these values of the manual
calculation correspond to the calculated values by SCIA Engineer.
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9.2 Spectral analysis example with « residual mode »

Example D-2.esa: spectral analysis with residual mode

If there is too less mass taken into account with the standard method, more mass will be added to satisfy the
prescriptions of the EC.

The aim of this method is to evaluate the missing mass as an extra mode which is computed as an equivalent
static load case. The static load case represents the weight of the missing mass under the cut-off acceleration.
Afterwards it's summed depending the selected rule SRSS, CQC, MAX.

This missing mass is taken in the seismic analysis as an extra mode which represents the weight of the missing
mass. The modal result of this mode is computed by a static equivalent load case.

The effective masses are calculated for each separate node. In the other method, the effective mass was
determined for each direction in each mode. Now, this parameter will be calculated for each different node in
direction XY and Z for each mode. Later, this missing mass will be taken into account by means of an extra
load case.

Effective mass in node:
My * @1, * Meftk ()
1000 = Yk,j

Mestk, )i =

Calculation of the effective mass in direction X for mode 1 and N2:
646,875kg * (—12,67) * 12,346 _

10000 * (—3,514) ’

Meff,NZ,x,(l) =

Effective mass in nodes (k direction, j mode):

Mode 1
Node Mx My M.
(kg) (kg) (kg)
N2 29 548,5 0,3
N4 1,8 548,5 -0,2
N5 3,5 689, 1 103,1
N7 4,2 1345,3 0
Total 12,346 3131,374 103,182
Mode 2
Node Mx My M.
(kg) (kg) (kg)
N2 174,0 48,6 0
N4 5,6 48,6 0,1
N5 211,7 -28,0 31,5
N7 13,3 -54,6 0
Total 404,60 14,53 31,52
Mode 1 & 2
Node Mx My M.
(kg) (kg) (ko)
N2 176,8 597,1 0,2
N4 7,4 597,1 -0,2
N5 215,2 661,1 134,6
N7 17,5 1290,7 0
Total 416,9494 3145,9065 134,6994
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The missing mass is the difference between the total mass for each node minus the effective mass:

Mmissing,NZX =646,9 —176,8 = 470kg

Node Mx My M;
(kg) (kg) (kg)
N2 470,0 49,8 646,6
N4 639,5 49,8 647,0
N5 572,3 126,4 652,9
N7 1520,0 246,8 1537,5

Out of these missing masses, load cases are generated. This by the formula:
Load casejx = Mmissing,i,k * Sk,cutoff

Node Fx Fy F2
(kN) (kN) (kN)
N2 0,940 0,100 1,293
N4 1,279 0,100 1,294
N5 1,145 0,253 1,306
N7 3,040 0,494 3,075
Total 6,4036 0,9457 6,9681

Note: The cut-off acceleration is the acceleration of the cut-off frequency, this the last calculated frequency.

Calculation of the mode coefficient:

SakG) * YkG)
Gy =—" —~

2m

*

0

1
(—3,5 14kgf)

_s? _ 1/2
GX,(l) = 166'4/52 = 0,042m kg
(i) Gix Gy G: G
Units (m*kg'?) (m*kg'?) (m*kg'?) (m*kg'?)
1 -0,042 0,673 0,122 0,752
2 0,178 -0,034 0,050 0,194

Calculation of the lateral forces:
Fikg) = Mikq * Gikg) = Mikg) * Gg) * Pikg * 0

1x(1) —

1
646,9kg * 0,75m. kg2 * (—12,67mm) * 166/s>

10000
Mode 1
Node F_x(1) F_y(1) F_2(1)
(N) (N) (N)
N2 -102,6 1227,3 3,4
N4 -63,0 1227,3 -2,9
N5 -124,7 1541.8 12711
N7 -149.6 3010,0 0,2
Total -439,9 7006,3 1271.,8
Mode 2
Node F_x(2) F y(2) F_2(2)
(N) (N) (N)
N2 379,1 -558,3 -0,3
N4 12,2 -558,3 0,6
N5 461,4 321,6 245,8
N7 29,0 627,8 -0,1
Total 881,7 -167,1 246,1
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Calculation of the shear force in base:

Figy = Z Fig gyl
i

() F x Fy F.
units (kN) (kN) (kN)
1 -0,4399 7,0063 1,2718
2 0,8817 -0,1671 0,2461
R 6,4036 0,9457 6,9681
Total 6,5 7,1 7,1

The overturning moment in each node is calculated as follows:
Mik ) = Fikg) * Zi

The height zi is equal to the height of the concerning node minus the overturning height. In this case, the
overturning height is equal to zero.

Mode 1
Node M_x(1) M_y(1)
(N.m) (N.m)
N2 -6136,4 513,1
N4 -6136,4 315,1
N5 -7709,0 623,6
N7 -15049,9 747.9
Mode 2
Node M_x(2) M_y(2)
(N.m) (N.m)
N2 2791,4 -1895,4
N4 2791,4 -60,8
N5 -1608,1 -2307,1
N7 -3139,2 -145,2

In this case, an extra overturning moment is calculated for the residual load case:
Mnzy,1) = 0,94kN * (5m — 0m) = —4,7kN.m

Mode R
Node M_x(R) M_y(R)
(kN.m) (kN.m)
N2 0 -4,7
N4 0 -6,4
N5 0 -5,7
N7 0 -15,2

The letter R stands for the residual mode.

For each mode the sum of the overturning moments are taken, afterwards the results are combined with

the SRSS method:

(i) M_x M_y
units (kN) (kN)

1 -35,0317 2,1997

2 0,8355 -4,4085

R 0,0000 -32,0180
Total 35,0 32,4
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Calculation of the modal displacement:
Uik () = Gg) * i

Mode 1
Node Ux Uy Uz
(mm) (mm) (mm)
N2 -0,95 11,40 0,03
N4 -0,59 11,40 -0,03
N5 -0,95 11,77 9,70
N7 -0,58 11,77 0,00
Mode 2
Node Ux Uy Uz
(mm) (mm) (mm)
N2 2,60 -3,82 0,00
N4 0,08 -3,82 0,00
N5 2,59 1,81 1,38
N7 0,08 1,81 0,00

To calculate the deformations for mode R, the load cases - generated out of the missing masses - are inputted
as real load cases on the nodes of the structure. This gives the following table:

2. Deformation of nodes

Linear calculation, Extreme : Node
Selection : All
Load cases : LC3
Node Case Ux Uy Uz

[mm] [mm] [mm]
N1 LC3 0 0 0
N2 LC3 4,14 4,91 0,03
N3 LC3 0 0 0
N4 LC3 1,46 4,91 0
N5 LC3 4,14 8,25 6,74
N6 LC3 0 0 0
N7 LC3 1,45 8,25 0

The deformations for each mode (namely mode 1, mode 2 and mode R) are combined with the SRSS-formula:

Total
Node Ux Uy Uz
(mm) (mm) (mm)
N2 4,98 12,99 0,04
N4 1,58 12,99 0,03
N5 4,98 14,48 11,89
N7 1,57 14,48 0,00
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The same for the modal acceleration:

. — 2
Ui gy = W * Ggy * P

Mode 1
Node ax ay az
(mm/s?) (mm/s?) (mm/s?)
N2 -158,6 1897,2 53
N4 -97,4 1897,2 -4,5
N5 -158,4 1957,8 16142
N7 -97,3 1957,7 0,1
Mode 2
Node ax ay a:
(mm/s?) (mm/s?) (mm/s?)
N2 586,0 -863,0 -0,4
N4 18,8 -863,0 1,0
N5 585,9 408,4 3121
N7 18,9 408,4 0,0

For the mode R, the constant value of 2000mm/s?2 is used:

Mode R
Node ax ay az
(mm/s?) (mm/s?) (mm/s?)
N2 2000,0 2000,0 2000,0
N4 2000,0 2000,0 2000,0
N5 2000,0 2000,0 2000,0
N7 2000,0 2000,0 2000,0
This gives through the SRSS-method:
Total
Node ax ay az
(mm/s?) (mm/s?) (mm/s?)
N2 2090,1 2888,7 2000,0
N4 2002,5 2888,7 2000,0
N5 2090,1 2828,4 2589,0
N7 2002,5 28283 2000,0

In the same way as for the ‘missing mass method’ the calculated deformations are put on the structure as real

load cases. This gives the following internal forces:

Mode 1:

Selection : All
Load cases : LC3

Linear calculation, Extreme : Member, System : Principal

Member |Case dx N Vy Vz Mx My Mz
[m] [[kN] [kN] [kN] [kNm] [kKNm] [kNm]
B1 LC3 0 4,38 -1,35 0,36 0,01 -0,49 3,44
B1 LC3 5 4,38 -1,35 0,36 0,01 1,29 -3,3
B2 LC3 0 -3,73 -1,35 -0,04 0,01 0,12 3,44
B2 LC3 5 -3,73 -1,35 -0,04 0,01 -0,06 -3,3
B3 LC3 0 0,62 -4,32 -0,78 0,28 6,54 18,85
B3 LC3 5 0,62 -4,32 -0,78 0,28 2,65 -2,73
B4 LC3 0 0 0,35 0,08 -4,43 -1,48 -0,4
B4 LC3 3 0 0,35 0,08 -4,43 -1,24 0,63
B5 LC3 0 0 -0,12 -1,19 1,48 2,69 0,35
B5 LC3 6 0 -0,12 -1,19 1,48 -4,43 -0,4
B6 LC3 0 0 -0,12 0,54 1,49 -1,46 0,33
B6 LC3 6 0 -0,12 0,54 1,49 1,78 -0,36
B7 LC3 0 0 0,23 -3,19 -1,4 4,78 -0,35
B7 LC3 3 0 0,23 -3,19 -1,4 -4,8 0,34
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Mode 2:

Linear calculation, Extreme : Member, System : Principal

Selection : All
Load cases : LC4
Member Case dx N Vy Vz Mx My Mz
[m] [kN] [kN] [kN] [kNm] [KNm] [KNm]
B1 LC4 0 -0,27 0,46 0,36 -0,15 -0,88 -1,17
B1 LC4 5 -0,27 0,46 0,36 -0,15 0,94 1,15
B2 LC4 0 0,59 0,46 0,01 -0,16 -0,03 -1,17
B2 LC4 5 0,59 0,46 0,01 -0,16 0,04 1,15
B3 LC4 0 -0,08 -0,77 0,49 -2,26 -1,52 3,07
B3 LC4 5 -0,08 -0,77 0,49 -2,26 0,94 -0,76
B4 LC4 0 0 -0,55 -0,08 -0,91 -0,25 -0,12
B4 LC4 3 0 -0,55 -0,08 -0,91 -0,5 -1,78
B5 LC4 0 0 -0,05 -0,33 0,25 1,04 0,2
B5 LC4 6 0 -0,05 -0,33 0,25 -0,91 -0,12
B6 LC4 0 0 -0,13 0,01 0,26 -0,06 0,31
B6 LC4 6 0 -0,13 0,01 0,26 -0,03 -0,48
B7 LC4 0 0 0,06 0,6 -0,1 -0,9 -0,05
B7 LC4 3 0 0,06 0,6 -0,1 0,89 0,14
Mode R:
Linear calculation, Extreme : No, System : Principal
Selection : All
Load cases : LC3
Member Case dx N Vy Vz Mx My Mz
[m] [kN] [kN] [kN] [kNm] [KNm] [KNm]
B1 LC3 0 4,232 -0,575 0,824 -0,134 -1,804 1,47
B1 LC3 5 4,232 -0,575 0,824 -0,134 2,314 -1,402
B2 LC3 0 -0,061 -0,574 0,244 -0,144 -0,559 1,47
B2 LC3 5 -0,061 -0,574 0,244 -0,144 0,661 -1,401
B3 LC3 0 2,798 -3,078 5,79 -2,301 -22,431 13,299
B3 LC3 5 2,798 -3,078 5,79 -2,301 6,521 -2,093
B4 LC3 0 -1,406 -1,192 0,005 -4,714 -1,048 0,818
B4 LC3 3 -1,406 -1,192 0,005 -4,714 -1,033 -2,759
B5 LC3 0 0,159 0,242 -1,301 1,048 3,092 -0,632
B5 LC3 6 0,159 0,242 -1,301 1,048 -4,714 0,818
B6 LC3 0 -1,527 0,164 -0,282 1,061 -0,117 -0,525
B6 LC3 6 -1,527 0,164 -0,282 1,061 -1,807 0,457
B7 LC3 0 0,039 -0,478 -1,637 -0,778 2,45 0,766
B7 LC3 3 0,039 -0,478 -1,637 -0,778 -2,461 -0,669
Combination via SRSS method gives:
Member |Case dx N Vy Vz Mx My Mz
[m] |[kN] [kN] [kN] [kKNm] [KNm] [KNm]
B1 LC2 0,00 6,10 1,54 0,97 0,20 2,07 3,92
B1 LC2 5,00 6,10 1,54 0,97 0,20 2,81 3,77
B2 LC2 0,00 3,78 1,54 0,25 0,22 0,57 3,92
B2 LC2 5,00 3,78 1,54 0,25 0,22 0,66 3,77
B3 LC2 0,00 2,87 5,36 5,86 3,24 23,41 23,27
B3 LC2 5,00 2,87 5,36 5,86 3,24 7,10 3,52
B4 LC2 0,00 1,41 1,36 0,11 6,53 1,83 0,92
B4 LC2 3,00 1,41 1,36 0,11 6,53 1,69 3,34
B5 LC2 0,00 0,16 0,27 1,79 1,83 4,23 0,75
B5 LC2 6,00 0,16 0,27 1,79 1,83 6,53 0,92
B6 LC2 0,00 1,53 0,24 0,61 1,85 1,47 0,69
B6 LC2 6,00 1,53 0,24 0,61 1,85 2,54 0,75
B7 LC2 0,00 0,04 0,53 3,64 1,60 5,45 0,84
B7 LC2 3,00 0,04 0,53 3,64 1,60 5,47 0,76
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The reactions are:

Mode 1
Linear calculation, Extreme : Node
Selection : All
Load cases : LC3
Support Case Rx Ry Rz Mx My Mz
[kN] [KN] [KN] [KNm] [KNm] [KNm]
Sn1/N1 LC3 -0,36 | -1,35 -4,38 3,44 -0,49 0,01
Sn2/N6 LC3 0,78 | -4,32 -0,62 18,85 6,54 0,28
Sn3/N3 LC3 0,04 | -1,35 3,73 3,44 0,12 0,01
Mode 2:
Linear calculation, Extreme : Node
Selection : All
Load cases : LC4
Support Case Rx Ry Rz Mx My Mz
[kN] [KN] [KN] [kNm] [KNm] [KNm]
Sn1/N1 LC4 -0,36 | 0,46 0,27 -1,17 -0,88 -0,15
Sn2/N6 LC4 -0,49| -0,77 0,08 3,07 -1,52 -2,26
Sn3/N3 LC4 -0,01 0,46 -0,59 -1,17 -0,03 -0,16
Mode R:
Linear calculation, Extreme : Node
Selection : All
Load cases : LC3
Support Case Rx Ry Rz Mx My Mz
[kN] [KN] [KN] [kNm] [KNm] [KNm]
Sn1/N1 LC3 -0,82| -0,575 -4,232 1,47 -1,804 -0,134
Sn2/N6 LC3 -5,79 | -3,078 -2,798 13,299 -22,431 -2,301
Sn3/N3 LC3 -0,24 | -0,574 0,061 1,47 -0,559 -0,144
SRSS:
Support |Case Rx Ry Rz Mx My Mz
[KN] |[kN] [kN] [KNm] [KNm] [KNm]
Sn1/N1 LC2 0,97 1,564 6,10 3,92 2,07 0,20
Sn2/N6 LC2 5,86 5,36 2,87 23,27 23,41 3,24
Sn3/N3 LC2 0,25 1,54 3,78 3,92 0,57 0,22
Notes:

In case of CQC, we don’t assume any correlation with the other modes (i.e. absolute value is added)
The cut-off frequency is the frequency of the latest modes in the analysis. It is the responsibility of the user to
select the correct number of modes. This can be done in the Solver Setup.
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Chapter 10: FORCED VIBRATION - HARMONIC LOAD

In this chapter, the forced vibration calculation is examined. More specifically, the structure will now be loaded
with an external harmonic load, which will cause the structure to vibrate.

A forced vibration calculation can be required to check the response of a building near a railroad or major
traffic lane, to check vibrations due to machinery, to verify structural integrity of a floor loaded by an aerobics
class,...

As in the previous chapter, first the theory will be discussed. The theory will then be illustrated by examples,
which will again be verified by manual calculations.

10.1. Theory

To understand what is going on during the dynamic analysis of a complex structure with frames or finite
elements, the forced vibration of a SDOF (Single Degree Of Freedom) system is regarded in detail. A complete
overview can be found in reference [1].

Consider the following system:

F(t)

|
| e

A body of mass m can move in one direction. A spring of constant stiffness k, which is fixed at one end, is
attached at the other end to the body. The mass is also subjected to damping with a damping capacity ¢. An
external time dependant force F(t) is applied to the mass.

The equation of motion can be written as:
m.§(t) + c.y(t) + k.y(t) = F(t)

When the acting force on this system is a harmonic load, equation (3.1) can be rewritten as follows:
m. §(t) + c.y(t) + k.y(t) = F.sin(v.t)

(3.2)
With:
F: amplitude of the harmonic load
v: circular frequency of the harmonic load
A solution to this equation is the following:
(t) = e75° [A. cos(wpt) + B.sin(wpt)] + Y. sin (v.£~ ©)
= . . SIn(w .
Y P P YA =122 + (2r8)2
(3.3)
Where:
Ys: the static deflection
F
Ys =1
(3.4)
&: the damping ratio
C
§= 2.m.w
(3.5)
wp: the damped circular frequency
Wp = W. 1-— EZ
(3.6)
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tan(0):
tan(@) = 2.5.1r
an(B) = 12
(3.7)
r: the frequency ratio
r=-—
w
(3.8)

The angle 6 signifies that the displacement vector lags the force vector, that is, the motion occurs after the
application of the force. A and B are constants which are determined from the initial displacement and velocity.
The first term of equation (3.3) is called the Transient motion. The second term is called the Steady-state
motion. Both terms are illustrated on the following figure:

Combined motion

Steady-stale
maticn

-

Transient

motion QL
-

The amplitude of the transient response decreases exponentially (e'E“)t). Therefore, in most practical
applications, this term is neglected and the total response y(t) can be considered as equal to the steady-state
response (after a few periods of the applied load).

Equation (3.3) can then be written in a more convenient form:

Y 1
Ys  /(1-r2)? + (2re)?

(3.9)

(Y/Ys) is known as the Dynamic Magnification factor, because Ysis the static deflection of the system under
a steady force F and Y is the dynamic amplitude.

The importance of mechanical vibration arises mainly from the large values of (Y/Ys) experienced in practice
when the frequency ratio r has a value near unity: this means that a small harmonic force can produce a large
amplitude of vibration. This phenomenon is known as resonance. In this case, the dynamic amplitude does
not reach an infinite value but a limiting value:

28
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10.2. Harmonic load in SCIA Engineer

In SCIA Engineer, a Harmonic Load can be inputted after creating a Combination of Mass Groups. This implies
that the steps used to perform a Free Vibration calculation still apply here and are expanded by the properties
of the Harmonic Load.

Conform the theory, a Harmonic Load is defined by a forcing frequency and an amplitude. To specify the
damping ratio of the structure, the logarithmic decrement can be inputted. [1]

The logarithmic decrement A is the natural logarithm of the ratio of any two successive amplitudes in the same
direction. This is illustrated on the following figure:

X3
A=In—
Xll
(3.10)
X xl
‘\\H } X Circular frequency /(1 — t?)w = w,
"
~ /
r\ N7 !
I '\
" = T, |— Exponential decay Xe~{<*
/

The logarithmic decrement A is related to the damping ratio ¢ by the following formula:
2né

e

A:

(3.11)
The damping ratio and the logarithmic decrement are looked upon in more detail in chapter « Damping ».

Harmonic Loads in SCIA Engineer are always defined as nodal forces i.e. a nodal load or a nodal moment.
More than one node of the structure can be loaded in a load case, but the frequency of all solicitations is equal
to the forcing frequency specified for that load case.

As specified in the theory, the static results are multiplied by the dynamic magnification factor. The dynamic
calculation is thus transformed to an equivalent static calculation. Therefore, a Linear Calculation needs to be
executed. During this calculation, the Free Vibration Calculation will also be performed since this data is
needed for the result of the Harmonic Load.

MJA — 2024/08/23 135



Advanced Training — Dynamics

The following diagram shows the required steps to perform a Forced Vibration calculation:

Activate the “Dyna

mics” functionality

A

'

Create am

ass group

/\

Input masses

Generate masses from static load cases

o~

-

Create a mas

s combination

A

v

Create a harm

onic load case

!

Input harm

onic loads

!

Refine the finite element mesh if required

!

Specify the number of eigenmodes to be calculated

!

Perform a line

ar calculation

This diagram is illustrated in the following examples.
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Example 10-1.esa

In this example, a beam on two clamped supports is modelled. The beam has a cross-section type IPE200, a

length of 6 m and is manufactured in S 235 according to EC-EN. A node has been added to the middle of

the beam, in which a mass of 200 kg will be inputted.

IPE200
AL —— PSS
6000 I,
A A

One static load case is created: the self-weight of the beam. However, in order not to take the self-weight into
account for the dynamic calculation, the volumetric mass of S 235 can be set to 1 kg/m?3 in the Material Library.
This will render it easier to check the results through a manual calculation.
The mass of 200 kg is vibrating with a frequency of 5 Hz. The damping ratio of the system is taken as 5%.

Step 1: functionality

The first step in the Dynamic calculation is to activate the functionality Dynamics on the Functionality tab in

the Project Data.
Step 2: mass group

The second step is to create a Mass Group

B " Mass groups

AAasmil 9> S - A

MG1 Name

Description
Bound to load case
Load case

Keep masses up-to-date with loads

Actions
Create masses from load case

Delete all masses

New Insert Edit

MG1

Yes
LC1 - Dead load

v

25>

Close

Step 3: masses

After the Mass Group has been created; the mass of 200 kg can be inputted in the middle of the beam.
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Step 4: mass matrix

Next, the Mass Group is put within a Combination of Mass Groups, which can be used for defining the
harmonic load.

B Combinations of mass groups X
A eBE 2= & A - Y
cMm1 [Name M1

Description

Contents of combination
MG1 [-] 1.00

New Insert Edit Close

Step 5: harmonic load case

After creating a Combination of Mass Groups, an harmonic load case can be defined through Load cases,
Combinations > Load Cases.

The Action type is defined on Variable, the Load type is Dynamic.
On “Specification”, the type of load case « Earthquake » is defined by default. But in this case, it is an

Harmonic load case.

B Load cases

AL Ekis o o
LC1 - Dead load

& =zl ~

Name

X

Lc2

LC2 - Harmonic |Descrip!ion

|Harmonic

Action type
Load group
Load type
Specification
Parameters
Logarithmic decrement
Frequency [Hz]
Master load case
Combination of mass groups
3D Wind

Actions

Delete all loads

Variable
LG2
Dynamic

Harmonic

0.31455270229
5.00

None

M1

Copy all loads to another loadcase >>>

New Insert Edit Delete

Close

The last option, Mass combi, shows which mass combination (mass matrix) will be used for the calculation of

the harmonic load case.

To specify the parameters of the harmonic load case, we need to use the menu « Parameters ».

The damping ratio was given to be 5%. Applying formula (3.11), the logarithmic decrement can be calculated:

Ao 2mé _2*71*0,05
J1-8  J1-(0,05)
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Step 6: introduction of a point load

The parameters of the load case have been defined, what is left is inputting the amplitude of the load. The
mass was 200 kg.

This corresponds to a load of 1,962 kN using 9,81 m/s2 for the acceleration of gravity.

This load can be inputted through the input panel « Point load on node »:

&

B 8

g

Note:

As specified in the theory, more than one harmonic load can be inputted in the same harmonic load case
however the harmonic parameters like damping and forcing frequency are defined on the level of the load
case. This implies that, for example, when several harmonic loads are vibrating with different frequencies,
different load cases have to be created.

Step 7: mesh setup

To obtain precise results for the dynamic calculation, the Finite Element Mesh is refined.
This can be done through the main menu Tools / Calculation & Mesh / Mesh settings.

¥ Mesh setup X
Name MeshSetup1

e —— )
Average size of 1D mesh element on curved 1D members [m] 1.000
Average size of 2D mesh element [m] 1.000
Connect members/nodes ]

Setup for connection of structural entities

Advanced mesh settings

B & & OK Cancel

The Average number of tiles of 1D element is set to 10.
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Step 8: solver setup

The last step before launching the calculation is setting the amount of eigenmodes to be calculated. For this
example, only one eigenmode is required so in Calculation & Mesh / Solver Settings the number of

frequencies is set to 1.

To compare the results with a manual calculation, the shear force deformation is neglected.

B Solver setup

Name
Advanced solver settings
General

SolverSetup1

Neglect shear force deformation ( Ay, Az>> A) v ]

Type of solver Direct

Number of sections on average member 10

Warning when maximal translation is greater than [mm] 1000.0

Warning when maximal rotation is greater than [mrad] 100.0

Coefficient for reinforcement 1

Nonlinearity

Initial stress

“ Dynamics

Type of eigen value solver Lanczos -
(Number of eigenmodes 1 ]

Use IRS (Improved Reduced System) method
Method for time history analysis

Mass components in analysis
Stability
Soil

B A A

direct time integration

Cancel

Step 9: modal analysis

All steps have been executed so the Linear calculation and modal analysis can be started through

Calculation, mesh > Calculation.

Note: For the moment, this analysis can be launched only on the 32-bit version of SCIA Engineer and in the

“v16 and older” post-processing environment.

FE analysis

Linear calculation

[+] Madal analysis

Stability

! Single analysis  Batch analysis I

Manlinzar calculation

x

140

Concrete - Code Dependent Deflections [CODY)
Construdion stage analysis
Engineering report regeneration

|:| Save project after analysis

Salver setup

0K

Mesh setup

Cancel
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This gives the following results:

Eigen frequencies

N f ® w? T
[Hz] [1/s] [1/s?] [s]

Mass combination : CM1

1 [21.43 [134.66 |18132.59 | 0.05

The deformation for the harmonic load shows the following:

Deformed structure

Linear calculation, Extreme : Global, System : LCS
Selection : All
Load cases : LC2

Case Member dx Ux/ux Uz/uz Fiy/fiy Resultant

[m] [mm] [mm] [mrad] [mm]
LC2 Bl 0.000 0.0 0.0 0.0 0.0
LC2 Bl 3.000 0.0 -0.6 0.0 0.6
LC2 B1 4.500 0.0 -0.3 -0.3 0.3
LC2 B1 1.500 0.0 -0.3 0.3 0.3

It is however very important to keep in mind that this is a vibration: half a period later the deformation is to
the upper side of the beam instead of the lower side.
The moment diagram for the harmonic load would give the next diagram:

o
v
|

1.56

Internal forces on member
Linear calculation, Extreme : Global, System : LCS

Selection : All
Load cases : LC2
Member css dx Case N \'/4 My
[m] [kN] [kN] [kNm]
B1 CS2 - IPE200 0.000 |LC2 0.00 1.04 -1.56
Bl CS2 - IPE200 5.400 |LC2 0.00| -1.04 -0.93
B1 CS2 - IPE200 3.000 |LC2 0.00 1.04 1.56

This diagram is completely analogous to the moment diagram which one finds for a simple point load.
However, when performing dynamic calculations, one must always take into account both directions of the
loading since the load vibrates in both directions.
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In SCIA Engineer, this double sided deformation can easily be checked by creating combinations of type
code or envelope. In these combinations, the dynamic load cases will be accounted for with both a positive
and a negative combination coefficient and thus both sides of the vibration amplitude are taken into account.

In this example, a combination of type Envelope - ultimate is created which contains only the harmonic load
case.

® " Combinations X

PIELIE 4 B¢ 2 * & Input combinations

co1 Name co1
IDscription
Type Envelope - ultimate
Contents of combination
LC1 - Dead load [-] 1.00
LC2 - Harmonic [-] 1.00
Actions
Explode to linear >>>
New Insert Edit Delete Close

The moment diagram for this combination shows the following:

13!

1.56

The vibration effect is correctly taken into account: both sides of the vibration are visible. This is also shown in
the Combination Key of the Document; which shows the two generated Linear combinations from the
Envelope combination (Local Extremes):

® " Combinations X

ﬂ :“"é K4 E&’ Be 2 é Input combinations -
co1 [Name co1/2

coin Description
Cco1/2 Type Linear - ultimate
co3 Amplified Sway Moment method no
Contents of combination
LC1 - Dead load [-] 1.00
LC2 - Harmonic [-] 1.00
New Insert Edit Delete Close
# " Combinations X

A 2 ) * &  Input combinations

co1 [Name co1/3
coin Description
co1/2 Type Linear - ultimate
cois3 Amplified Sway Moment method no
Contents of combination
LC1 - Dead load [-] 1.00
LC2 - Harmonic [-] -1.00
New Insert Edit Delete Close
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Manual calculation

In order to check the results of SCIA Engineer, a manual calculation is performed.
First, the calculated eigen frequency is checked using formula (2.3).
Using default engineering tables [11], the maximum static deformation of a beam with length L, clamped at
both sides and loaded with a load F in the middle is given as:
5 FL3
max "~ 129El
(3.12)
Where:
F=1,962 kN =1962 N
L=6 m=6000 mm
E = 210000 N/mm?
| = 19430000 mm+*

So:
(1962N) * (6000mm)?3

= = 0,54095mm
129 %« 210000 N/mmz * 19430000mm*

max

The K rigidity of this system can then be calculated:

k= o 10N 693 N/ nm = 3626933,33 N/,
" 8pax  0,54095mm ’ mm = ’ m

Applying formula (2.3):

k  [3626933,33N/,
= |== [——— M= 134677ad
@ \/m j 200kg 67125

So:
w
f=—=21,43Hz
2m

This result corresponds exactly to the result calculated by SCIA Engineer.

Now the eigen frequency is known, the results of the harmonic load can be verified.
The harmonic load had a forcing frequency of 5 Hz, which corresponds to a circular frequency of 31,416 rad/s.

Applying formula (3.8) the frequency ratio can be calculated:

v 31416Tad/
= =2 = 0,233289
®  134,6771ad/,

The frequency ratio can then be used in formula (3.9) to calculate the Dynamic Magnification Factor:
Y

1 1
. = =1,0572
Ys  J(1-r®)2+(2r9)? /(1-0,233289%)2 + (2 * 0,233289 * 0,05)2

This implies that the static results need to be multiplied by 1,0572 to obtain the dynamic results.
The static deformation was calculated as §,,,, = 0,54095 mm.

The dynamic deformation is equal to 1,0572 * 0,54095mm = 0,5719 mm.
This result corresponds exactly to the result calculated by SCIA Engineer.

In the same way the moment in the middle of the beam can be calculated.
Using default engineering tables [11], the maximum static moment in the middle of a beam with length L,
clamped at both sides and loaded with a load F in the middle is given as:

FL  1,962kN * 6m
M= - &8 - 1,4715kNm

The dynamic moment is equal to 1,0572 * 1,4715kNm = 1,556kNm

This result corresponds exactly to the result calculated by SCIA Engineer.
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10.3. Resonance

As specified in the theory, resonance occurs when the frequency ratio r has a value near unity. In this case,
large values for the Dynamic Amplification factor are obtained.

To illustrate this, the calculation of the Dynamic Amplification Factor is repeated for different frequency ratios
and different damping percentages. The results are given in the following table:

Frequency Forcing Meg. factor | Mag. factor | Meg. fador MNag. fador Mag. fackor Mag. fackor
Ratic Frequence [Hz] | Damping 53] Darnping 8% ] Damping 10%| Damping 1536] Damping 263 | Damping 50%
0,0 0,00 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000
0.2 429 10414 1,0411 1,0408 1,0398 1,0381 10188
0.4 BE7 1,181 1,1870 1,1851 1,1785 1,1581 10748
0.8 12,88 1,.5887 15462 1,.5367 1.5041 14148 1,1398
0.8 17,15 27116 28173 25384 23113 18582 1,1358
1.0 .43 10,0000 18,2600 5,0000 33333 2,0000 1,0000
12 25,72 21928 20830 19082 1, 7580 1,2440 07824
1.4 20.01 1.0308 1.0144 1.0000 0.9543 08417 0.58M
1.6 429 08377 10,8326 10,8280 08127 05704 10,4478
18 38,58 10,4450 10,4428 10,4408 10,4340 04142 10,3480
20 4287 00,3326 0,335 10,3304 00,3289 03182 02774
22 47,15 10,2800 10,2503 10,2587 0,25687 02503 02280
24 51,44 10,2098 10,2094 10,2090 02077 02037 0,1&8m
28 55,73 0,1734 0, 1732 01729 0,1720 10,1894 01582
28 80,01 10,1481 10,1459 00,1457 10,1451 0,1432 0,1353
30 54,30 0,1249 0,1248 0,1248 01242 01229 0,117
3.2 a5 01082 10,1081 10,1080 0,1078 10,1088 01023
3.4 T2ET 10,0948 0,098 10,0945 10,0243 00935 0,090
3.6 7718 0.0838 10,0835 00835 00833 ooea7 0.08M
3.8 81,45 10,0744 10,0743 0,0743 0,074 [T ooTe
4,0 85,73 10,0888 10,0808 10,0868 10,0865 10,0861 00844
42 90,02 10,0801 10,0800 10,0800 0,0599 00596 00583
4.4 84,31 10,0545 10,0544 10,0544 10,0543 0,054 10,0530
46 o859 10,0488 10,0408 10,0498 10,0495 00493 00484
4.8 10253 10,0454 10,0453 10,0453 10,0453 0,0451 00443
5.0 10717 0,047 0,0418 0,0418 10,0418 00414 10,0408

In order to draw conclusions, the numerical results are plotted graphically:

7 T
|

g | | —— Damping 5%
-E | Damping &%
g 5 Jf ] )
§ [} | —— Damping 10%
"4 | | —— Damping 15%
E
= . o
E I. A | Damping 25%
a —— Damping 50%
§
=
)

3 4 5

Frequency Ratio
Amplitude — frequency response

First of all, the resonance phenomenon is clearly visible. When the frequency ratio equals unity, the Dynamic
Magnification factor becomes very large indicating that a small harmonic load can produce a large amplitude
of vibration.

Second, the influence of the damping ratio on the system response in resonance is significant. With a damping
ratio of 5%, the magnification factor is about 10; with a damping ratio of 50%, the magnification factor is
reduced to 1.
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In general, the following can be concluded from this graphic [1]:

The system response at low frequencies is stiffness-dependent. In the region of resonance, the response is
damping-dependent and at high frequencies, the response is governed by the system mass: mass-
dependent.

It is important to keep this in mind when attempting to reduce the vibration of a structure. For example, the
application of increased damping will have little effect if the excitation and response frequencies are in a region
well away from resonance, such as that controlled by the mass of the structure.

The effect of resonance can also be illustrated in SCIA Engineer.
In the project “Harmonic_Load_1", the excitation frequency is 5 Hz. The eigenfrequency is 21.43 Hz. So this
is not in the resonance area.

To see the response in function of the frequency, we can create several load cases with other excitation
frequency. You can easily do this by copying the existing load case and changing the excitation frequency.
This is shown in the next example.

Example 10-2.esa

Another common application of a harmonic load is a structure loaded with a plunger system or a motor. Both
the reciprocating effect of the plunger and the rotating unbalance of the motor produce an exciting force of
the inertia type of the system.
For an unbalanced body of mass m, at an effective radius e, rotating at an angular speed v, the exciting
force F can be written as [1]:
F=m, e-v?

(3.13)

This is illustrated in following example.

An electric motor with a mass of 500 kg is mounted on a simply supported beam with overhang. The beam
has a cross-section type HE240A and is manufactured in S 235 according to EC-EN. The beam has a length
of 4 m and the overhang is 3 m.

The motor has an unbalance of 0,6 kgm. The damping ratio of the system is taken as 10%.

vt
HEA240 mé\

N JAN

4000 1500 1500

The motor can operate at speeds of 800, 1000 and 1200 rpm. For each of these speeds, the amplitude of
forced vibration needs to be calculated to check, for example, if the vibrations induced by the motor are
acceptable.

One static load case is created: the self-weight of the beam. However, in order not to take the self-weight into
account for the dynamic calculation, the volumetric mass of S235 can be set to 1 kg/m? in the Material Library.
This will render it easier to check the results through a manual calculation.

A node has been added to the middle of the overhang to specify the location of the motor.

Step 1: functionality

The first step in the Dynamic calculation is to activate the functionality Dynamics on the Functionality tab in
the Project Data.
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Step 2: mass group

The second step is to create a Mass Group.

B ' Mass groups

BaeoeBik 9> & - A

MG1 Name

Description
Bound to load case
Load case

Keep masses up-to-date with loads

Actions
Create masses from load case

Delete all masses

New Insert Edit

- Y
MG1

Yes
LC1 - Dead load

v

Step 3: masses

After the Mass Group has been created; the 500 kg mass of the motor can be inputted in the middle of the

overhang:

=

Step 4: mass matrix

Next, the Mass Group is put within a Combination of Mass Groups, which can be used for defining the

harmonic loads at the different speeds:

X

¥ Combinations of mass groups
(A eBE 2 & A miy;
M1 [Name M1
Description
Contents of combination
MG1 [-] 1.000
New Insert Edit Close
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Step 5: load cases definition

After creating the Mass Combination, three harmonic load cases can be defined, one for each speed.
Each load case uses the same Mass Combination and has the same damping specifications.

The damping ratio was given to be 10%. Applying formula (3.11) the logarithmic decrement can be
calculated:

A 2mé _ 2xmx0,10
Ji-¢  J1-(010)

The forcing frequency is different for each load case and can be calculated from the given speeds:

= 0,631483883399

2mrad 1min

Vgoo = 800rpm * * = 83,78 1ad => fg90 = 13,33Hz
800 Y Trev . 60s / S 800
1000 zrrad 1M _ ) 04,72 rady f 16,67H
\Y = rpm * * — = , => = , z
1000 Y Trev . 60s S 1000
1200 2mrad 1min _ s 66 rad/ f 20,00H
Vv = rpm * * = => = Z
1200 p 1rev . 60s ’ s 1200 ’
B Load cases X
A sBEKI» 9= & @ 4 HRY,
LC1 - Dead load [Name LC4
LC2 - Speed 800rpm Description Speed 1200rpm
LC3 - Speed 1000rpm Action type Variable
LC4 - Speed 1200rpm Load group LG2
Load type Dynamic
Specification Harmonic
Parameters
Logarithmic decrement 0.631483883399
Frequency [Hz] 20.00
Master load case None
Combination of mass groups M1
3D Wind
Actions
Delete all loads >>>
Copy all loads to another loadcase >>>
New Insert Edit Delete Close
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Step 6: harmonic forces

The parameters of the harmonic loads have been defined. What is left is inputting the amplitude of the three
exciting forces.

Using formula (3.13) these forces can be calculated from the forcing circular frequency and the mass
unbalance.

2
Fgoo = M, e. V25, = 0,6kgm * (83,78 rad/s) =4211,03N = 4,21kN
d 2
F1o00 = My €. V2000 = 0,6kgm (104,72 ra /S) = 6579,74N = 6,58kN

2
Fiz00 = My €.V3200 = 0,6kgm = (125,66 "24/s)" = 9474,82N = 9,47kN

The loads are inputted through Load > Point Force > In Node:

Step 7: mesh setup

To obtain precise results for the dynamic calculation, the Finite Element Mesh is refined.
This can be done through Calculation & Mesh / Mesh Settings.

¥ " Mesh setup X
Name MeshSetup1
ey — )
Average size of 1D mesh element on curved 1D members [m] 0.200
Average size of 2D mesh element [m] 1.000
Connect members/nodes L4

Setup for connection of structural entities
Advanced mesh settings

\ - O
B A& & Cancel

The Average number of tiles of 1D element is set to 10.
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Step 8: solver setup

The last step before launching the calculation is setting the amount of eigenmodes to be calculated. For this
example, only one eigenmode is required so in Calculation & Mesh / Solver Settings the number of
frequencies is set to 1.

To compare the results with a manual calculation, the shear force deformation is neglected.

B " Solver setup X

Advanced solver settings

‘* General
(Neglect shear force deformation (Ay, Az >> A) v ]
Type of solver Direct v
Number of sections on average member 10
Warning when maximal translation is greater than [mm] 1000.0
Warning when maximal rotation is greater than [mrad] 100.0
Coefficient for reinforcement 1

Nonlinearity

Initial stress

Dynamics
Type of eigen value solver Lanczos v
(Number of eigenmodes 1 )

Use IRS (Improved Reduced System) method

Method for time history analysis direct time integration v
Mass components in analysis
Stability

B & A

Step 9: modal analysis

All steps have been executed so the Linear calculation and modal analysis can be started through
Calculation, mesh > Calculation.

Note: For the moment, this analysis can be launched only on the 32-bit version of SCIA Engineer and in the
“v16 and older” environment.

FE analysis *

! Single analysis  Batch analysis l

Linear calculation
Monlingar calculation
Moﬁalanalysis
Stahility
Concrete - Code Dependent Deflections [CDDY)
Construdtion stage analysis
Engineering report regeneration

|:| Save project after analysis

Salver setup | Mesh setup

OK Cancel
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This gives the following results:
Eigen frequencies

Mass combination : CM1
1 [14.15 [88.88 [7899.96 | 0.07

The nodal deformations for the harmonic loads at the location of the motor are the following:

- At 800 rpm:
N
L, _
vy i |
[Te)
® \/
T Q
o
|
- At 1000 rpm:
)
0
N~
©
<
M
N
L 1 |
o A
- At 1200 rpm:

4,93

T
= 2,31

AN

As stated in the previous example, it is important to keep in mind that the signs are not relevant since a vibration
occurs on both sides of the equilibrium position.

Manual calculation

In order to check the results of SCIA Engineer, a manual calculation is performed [15].
First, the calculated eigen frequency is checked using formula (2.3)
Using default engineering tables [11], the maximum static deformation of a simply supported beam with length
L, an overhang with length a and loaded with a load F at the end of the overhang is given as:
Fa?(L + a)
max — 3EI
(3.14)

-

/N AN
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The rigidity k of this system can then be calculated:
k =

3EI
Smax a*(L+a)
Where:
L=4m=4000 mm
a=15m=1500 mm
E = 210000 N/mma2
| = 77600000 mm*

So:
3+ (210000 N/mmz) « (77600000mm*)

k= =3950,55N/, = 3950545,45 N
(1500mm)?2 = (4000mm + 1500mm) ’ /mm ) /m

Applying formula (2.3):

k  [3950545,45N/
= |—= |/~ =~ 72 _8889 rad
@ \/m \[ 500kg ’ /s

So:
w
f=—=14,15Hz
2T

This result corresponds exactly to the result calculated by SCIA Engineer.

Applying formula (3.8) the frequency ratios can be calculated for each motor speed:

Voo _ 83,7870/

2800 27 IS 09425
o  gggorad/

Igoo =

Fiogy = 000 _ 10472 s 1,1781
1000 — ® - 88‘89 I‘ad/s - 4,

_ V1200 _ 125,66 I.ad/s
M200 = = 7= = 88,89rad/s

= 1,4137

The frequency ratios can then be used in formula (3.9) to calculate the Dynamic Magnification Factors. When
also applying formula (3.4) the Dynamic Amplitude can be calculated for each speed:

Fooo) 4211,03N \
Yayo = Kk _ 3950545,45 N/ _ 486mm
V@ = 120002 + 2rgeod)? /(1 —0,9425%)2 + (2 + 0,9425 * 0,10)2
Fuooo) 6579,74N N
Yiggq = Kk _ 3950545,45 N/, — 367mm
V@ = 1250002 + (2r10008)2 /(1 —1,17812)2 + (2 * 1,1781 * 0,10)2
Fuzoo) 9474,82N N
Yi200 = k = 395054545 /m = 2,31mm

\/(1 —15500)? + (2r19008)? \/(1 —1,4137%)2 + (2 * 1,4137 * 0,10)2

These results correspond exactly to the results calculated by SCIA Engineer.
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In the same way as in the previous example, the calculation can be repeated for several angular velocities.
The result is shown graphically on the following figure:

Amplitude - Velocity Response

Fa %] E:Y Ln
1 1 1 1

Forced Vibration Amplitude [mm]
1

=

T T
1000 1300 2000

g

Angular Velocity [rpm]
Amplitude — velocity response

Note:

The main feature to notice is the decrease in vibration amplitude when the forcing frequency increases due to
moving away from resonance [15].
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Chapter 11: DAMPING

In the previous chapters, the influence of damping on the dynamic response of a structure was shown.
Especially in the vicinity of resonance the effect of damping was significant.

In this chapter, damping will be looked upon in more detail. First the theory will be explained after which the
input of non-uniform damping in SCIA Engineer is regarded.

By means of the examples of the previous chapter, the influence of damping on the seismic response is
illustrated. The chapter is finished with a 3D structure, which takes into account material damping of the
different elements.

11.1. Theory

Damping can have different causes. The component that is always present is structural damping. Structural
damping is caused by hysteresis in the material: the transfer of small amounts of energy into warmth for each
vibration cycle possibly increased by friction between internal parts.

Other causes can be the foundation soil of the building and aerodynamic damping due to the diversion of
energy by the air [22]. In many cases, damping is increased by adding artificial dampers to the structure.

In the same way as for the previous chapters, first the theory is examined. A complete overview can be found
in reference [1].

Consider the following damped free-vibrating system:

AN

A body mass m can move in one direction. A spring of constant stiffness k, which is fixed at one end, is
attached at the other end to the body. The mass is also subjected to damping with a damping capacity c.

The equation of motion, using matrix notations can be written as:

M.%(t) + C.x(t) + Kx(t) = 0
(5.1)
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A possible solution to this equation is one of the type:

x=A.est
(5.2)
Substituting (5.2) in (5.1) gives:
M.s?2. A eSt +C.s.AeSt + KA eSt =0
(5.3)
This equation can be rewritten as:
s?+2.ns+ w2 =
(5.4)
With:
_ C
TToM
. (5.5)
K
w, = M
(5.6)
The possible solutions for equation (5.4) are:
s=-nz,n?—w?
(5.7)

It is clear that the response of the system depends on the numerical value of the radical. Therefore the following
three possibilities need to be examined:

(5.8)

These can be rewritten as:

C=2.vKM
C<2.vKM

C>2.VKM
(5.9)

The condition C = 2.v/K.M = C, is called critical damping. In this case, the displaced body is restored to
equilibrium in the shortest possible time, without oscillation.

The ratio ¢ is called the damping ratio or the relative damping:

e
E—CC

Therefore, when assuming n = &. w,, equation (5.5) can be written as:

C=2E5w,.M
(5.10)
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The three possibilities of equation (5.8) can be rewritten as:

£=1
f<1

£>1
(5.11)

When looking at the conditions £ = 1 and ¢ > 1, it can be shown that there is no harmonic solution.
Only the condition ¢ < 1 gives a harmonic solution.

Introducing the damped circular frequency:
wp = Wp.4/1— &2

the solution to equation (5.1) can be written as:
x = e~%nt {A cos(wpt) + B.sin(wpt)}
(5.12)

In chapter 2, this vibration equation was illustrated by the following figure:

X
X,
\\\ I' x" Ci":ul' fmm.,lvrn _rzlw 1 ""]v
( i
Nan
| LZ\QT;:-:-— y
il f\(_\
A r
- "'l v Exponential decay Xe~iw?
/

A convenient way to determine the damping in a system was shown to be the logarithmic decrement A,
which is the natural logarithm of the ratio of any two successive amplitudes in the same direction.

X 21
A=In——= s

X11 _,/1—22

(5.13)

Note:

As shown above, the circular frequency is reduced by the damping action to obtain the damped circular
frequency. However, in many systems this reduction is likely to be small because very small values of ¢ are
common; for example, in most engineering structures £ is rarely greater than 0,02. Even if § = 0,2; ap = 0,98,

Annex B gives some references for numerical values of the damping ratio.
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11.2. Damping in SCIA Engineer

In SCIA Engineer, damping can be specified on 1D elements, 2D elements and supports. The damping of
each of these elements (or substructures) will be used to calculate a modal damping ratio for the whole
structure for each Eigenmode. In the literature this is described as Composite Damping.

Composite damping is used in partly bolted, partly welded steel constructions, mixed steel-concrete structures,
constructions on subsoil, ...

For structural systems that consist of substructures with different damping properties, the composite damping

matrix C can be obtained by an appropriate superposition of damping matrices for the individual substructures
Ci:

I N

C= z G

i=1

1

(5.14)
With:
C;: the damping matrix for the it substructure in the global coordinate system.
N: the number of substructures being assembled.

+ Proportional Damping (Rayleigh Damping)

A way of describing the damping is assuming that the damping matrix is formed by a linear combination of the
mass and stiffness matrices.
G = ;. M; + B;. K;
(5.15)

With:

a; and B;: proportional damping for the it part of the structure.

Mi: mass matrix for the it part of the structure in the global coordinate system.

Ki: stiffness matrix for the ith part of the structure in the global coordinate system.

Formulas for these proportional damping coefficients can be found in reference [19].
Examples can be found in reference [20].

+ Stiffness-Weighted Damping

For structures or structural systems that consist of major substructures or components with different damping
characteristics, composite modal damping values can be calculated using the elastic energy of the structure
(8, [21]:
¢ Db
T E
(5.16)
With:
§: damping ratio of the considered eigenmode.
E: elastic energy of the structure, associated with the modal displacement of the considered
eigenmode.
N: number of all substructures.
&;: damping ratio for the i¢me substructure.
Ei: elastic energy for the i*™e substructure, associated with the modal displacement of the considered
eigenmode.

Equation (5.16) can be rewritten in the following way [19]:
@] [ZiL[8K]i]. @
&= 2

wj

(5.17)
With:
[EK]i: stiffness matrix for the it substructure in the global coordinate system, scaled by the modal
damping ratio of the it substructure.

Note:

This formula may be used as long as the resulting damping values are less than 20% of critical. If values in
excess of 20% are computed, further justification is required.
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As specified, in SCIA Engineer on each element a damping ratio can be inputted. For this ratio, also the
damping of the material can be used from which the element is manufactured.

When no damping ratio is inputted on an element, a default value will be used since all elements need a
damping ratio before the above formulas can be applied. The input of this default will be shown in the examples.
Analogous to the input of other objects in SCIA Engineer, Damping on elements will be grouped in a Damping
Group. In turn, this Group can be assigned to a Combination of Mass Groups.

+ Support damping

Additional to the damping of 1D and 2D elements, SCIA Engineer allows the input of a damper on a flexible
nodal support. The modal damping ratio g; is calculated by the following formula:
CD;F,j- [Zs Cs]- (Ds,j
& = T
(5.18)
With:
wj: the circular frequency of mode j
&, ;: the modal displacement in support node s for mode j
Cs: the damping constant for the support
a: a user defined parameter (> 0)

The total modal damping ratio can then be calculated as the summation of equations (5.17) and (5.18).

As specified, on all 1D and 2D elements a damping ratio has to be defined. This is not the case with supports,
not every support needs to have a damping value.
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The following diagram shows how non-proportional damping is inputted in SCIA Engineer:

Activate the functionalities:
“Dynamics”
- « Non-proportional damping »

y

Create a damping group

!

Input dampers

!

Assign the damping group to a mass combination

!

Proceed with the steps of the previous chapters.

The use of dampers and the calculation of the composite damping ratio will be illustrated in the following
examples.

Note: The damping functionality is only available on 32-bit version of SCIA Engineer.

Example 11-1.esa
In this example, the principle of stiffness-weighted damping is illustrated.

A concrete frame is modelled in which the beam is assumed to be rigid. In this case, only the columns take
part in the horizontal stiffness of the frame.

The left column has a Rectangular 500 x 500 section, the right column a Rectangular 350 x 350 section. The
column bases are modelled as rigid. To model the rigid beam, a Rectangular 500000 x 500000 section is
used. To make sure this beam acts as rigid, in the nodes between the columns and the beam, supports are
inputted which have a fixed Translation Z and Rotation Ry. The height of the columns and the length of the
beam are taken as 5m. All elements are manufactured in C30/37 according to EC-EN.

Rigid Beam
—r K5 9 7]
L N
= [ =
{ &£ £
g 2 2
O O
S Q
N
IV 1
V4 5000 %
1 7
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The beam is loaded by a line mass of 500 kg/m. The left column has a damping ratio of 12%, the right
column a damping ratio of 3%.

One static load case is created: the self-weight of the beam. However, in order not to take the self-weight into
account for the dynamic calculation, the volumetric mass of C30/37 can be set to 1e-10 kg/m? in the Material
Library. This low value is chosen to avoid any influence by the rigid beam.

The steps of the Free Vibration calculation are followed and extended with the input of damping.

Step 1: functionality

The first step in the Dynamic calculation is to activate the functionalities Dynamics and Non-Proportional
Damping on the Functionality tab in the Project Data.

Project data X

Basic data | Functionality | Actions Unit Set Protection

General Detailed

Property modifiers 4 lDynamics

Model modifiers Modal & harmonic analysis

Parametric input Seismic spectral analysis

Climatic loads Dynamic time-history analysis

Mobile loads [Non proportional damping vl ]
Stability Pad foundation check

Nonlinearity

Structural model

IFC properties

Advanced concrete checks
Prestressing

Bridge design

Excel checks

Document

Step 2: mass group and masses

A Mass Group is created after which the line mass of 500 kg/m can be inputted on the rigid beam.

L]

5000
500.0
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Step 3: damping

Before creating a Combination of Mass Groups, the dampers are inputted.
= 0% Dynamics
@ Masses
¥ Mass groups
%% Combination of mass groups

E|§ Damper setup
¥ Dampers
J& Damping groups

[ e S

First of all, a Damping Group is created.

# ° Damping group X
A e > & @l A BRY,
DG1 Name DG1

Description

Type of default damping Global default

As specified in the theory, on each element a damping ratio needs to be inputted. When no damper is specified,
a default value will be taken. In the properties of the Damping Group, this default can be set as either:

-« Global default »: the logarithmic decrement specified in the Damper Setup will be used.
-« Material default » : the logarithmic decrement of the material will be used.

In this example, the Global default is chosen.
After the creation of a Damping Group, Dampers can be inputted. In this example, 1D Damping shall be

inputted on the columns. The damping can be inputted in the following ways, which have been explained in
the theory:

# " 1D damping X
Name D1D3
Value Logarithmic decrement
- Relative damping

Rayleigh damping

Cancel
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On the left column, a Relative damping of 0,12 is inputted.
On the right column, a Relative damping of 0,03 is inputted.

[ ] [ ]
L1

LI

127% 3%

As a final step, the general parameters can be checked through Damper Setup:

® ° Damper setup X

Global default

Base value - logarithmic decrement 0.05
Alpha factor for supports 0.5
Maximal modal damping 0.2

' 0l O,
B & 8

The Base value specifies the default value when a Damping Group of type Global default is chosen and no
damper is inputted on an element.

The Alpha factor is used in the damping calculation for supports as specified in the theory.

When the composite modal damping ratio is calculated, the value is checked with the Maximal modal damping
value inputted here. If the calculated value is higher than the maximal value, the maximal value is used. In this
example, the maximal value is set to 0,2 in accordance with the remark for formula (5.17)
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Step 4: mass matrix

A Combination of Mass Groups can now be created and the Damping Group can be specified:

# " Combinations of mass groups

AIeBEk 2= & A

M1 [Name M1
Description
« C of ¢ bination
MG1[-] 1.00
Damping group DG1

New Insert Edit Delete

PG
-1V

Close

Step 5: mesh setup

To obtain precise results for the dynamic calculation, the Finite Element Mesh is refined.
This can be done through the main menu Tools / Calculation & Mesh / Mesh settings:

# " Mesh setup

MeshSetup1

l Average number of 1D mesh elements on straight 1D members

10 )

Average size of 1D mesh element on curved 1D members [m]
Average size of 2D mesh element [m]
Connect members/nodes
Advanced mesh settings
General mesh settings
Minimal distance between definition point and line [m]
Definition of mesh element size for panels
Average size of panel element [m]
Elastic mesh
Hanging nodes for prestressing
“ 1D elements
Minimal length of beam element [m]
Maximal length of beam element [m]
Average size of tendons, elements on subsoil, nonlinear soil spring [m]

Generation of nodes in connections of beam elements

B & &

1.000
1.000

0.001
Automatic -

1.000

0.100
100.000
1.000

Cancel

The Average number of tiles of 1D element is set to 10.
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Step 6: solver setup

The last step before launching the calculation is setting the amount of eigenmodes to be calculated. For this
example, only one eigenmode is required so in the main menu Tools / Calculation & Mesh / Solver Settings,

the number of frequencies is setto 1.

To compare the results with a manual calculation, the shear force deformation is neglected.

# " Solver setup

Advanced solver settings

‘ General
[Neglect shear force deformation ( Ay, Az >> A) v ]
Type of solver Direct -
Number of sections on average member 10
Warning when maximal translation is greater than [mm] 1000.0
Warning when maximal rotation is greater than [mrad] 100.0

Coefficient for reinforcement

4 Initial stress
Initial stress

“ Dynamics

Type of eigen value solver Lanczos

[Number of eigenmodes 1 ]
Use IRS (Improved Reduced System) method

Mass components in analysis
“ Soil

oY ol

Step 7: linear calculation and calculation protocol

All steps have been executed so the Free Vibration calculation can be started through the main menu Tools
/ Calculation & Mesh / Calculate.

The following results are obtained through the Calculation Protocol for the Eigen Frequency calculation:

Sum of masses

Combination of mass groups 1 |2500.00 [0.00 [2250.00

Relative modal masses
Mode Omega Period Freq. Wxi / Wyi / Wzi / Wxi_ R/ Wyi R/ Wzi_R/ Damp

[rad/s] [s] [Hz] Wxtot Wytot Wztot Wxtot_ R Wytot_ R Wztot_R ratio
1 89.0864 0.0705 14.1785 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1026
[ [ [ | | 1.0000 [ 0.0000 | 0.0000 [ 0.0000 [ 0.0000 | 0.0000 | |

The calculated modal damping ratio is shown to be 0,1026 or 10,26%.
Step 8: manual calculation

In order to check the results of SCIA Engineer, a manual calculation is performed.
First, the calculated eigen frequency is checked using formula (2.3)
In this example, the two columns can be treated as fixed-fixed beams. Using default engineering tables [12],
each column contributes the following stiffness to the frame:
12.EI

=0

(56.19)

With for column 1:
E = 32000N/mm?2
| = 5208300000mm*
L = 5000mm
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And for column 2:
E = 32000N/mm?2

| = 1250500000mm*
L = 5000mm
So:
12« 33313121\] * 5208300000mm*
12 % 32002N *1250500000mm*
k2 = o = 3841,536N/mm

(5000mm)3

Both columns act in parallel since each column will displace the same amount due to the fact the beam is
rigid. The beam itself does not bend so it does not contribute to the stiffness.
15999,8976N + 3841,536N _19841,4336N

mm mm mm

kot = kg +kp =

The vibrating mass is calculated as:
500kg

* 5m = 2500kg

_ [k _ [198414336N/m _ o
©= m- 2500kg 0 o087rad/s

w
f=—=14,1787Hz
2m

These results correspond exactly to the results obtained by SCIA Engineer.

Next, the stiffness-weighted damping ratio is calculated. The first column has a damping ratio of 12%, the
second column a damping ratio of 3%.
Using the elastic energy principle of formula (5.16) the modal damping ratio can be calculated as follows:
&k + 85k,
T ke
tot

(0,12 ¥15999,8976N/mm) + (0,03 * 3841,536N/mm)
§= 19841,4336N/mm

§=0,1026 = 10,26%

This result corresponds exactly to the result obtained by SCIA Engineer.
The modal damping ratio can now be used to calculate the Damping Coefficient in a seismic calculation. This
will be illustrated in the following examples.
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Example 11-2.esa

In this example, non-proportional damping is accounted for in a seismic calculation using the SRSS modal
combination method. To this end, the example (04-2) from the previous chapter is extended with dampers.
More specifically, a relative damping of 12%, 3% and 8% is inputted on the three columns starting from the
base of the structure.

Step 1: functionality

The first step to take into account the damping is to activate the functionality Non-Proportional Damping on
the Functionality tab in the Project Data.

Step 2: damping group

The second step is the creation of a Damping Group.

8" Damping group X
AR e v & FE A |V
DG1 Name DG1

Description

Type of default damping Global default

Since a damper will be inputted on all elements, the choice of the default damping type is not relevant.

Step 3: dampers

After the creation of a Damping Group, Dampers can be inputted. A relative damping of 12%, 3% and 8% is
inputted on the three columns starting from the base qf_the structure:

8%
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Step 4: mass matrix

As a final step, the Damping Group is assigned to the Mass Combination:

# " Combinations of mass groups X
AAesBk 2 8 A -V
M1 [Name M1
Description
Contents of combination
MG1 [-] 1.00
Damping group DG1

Step 5: linear calculation and calculation protocol

The non-proportional damping has now been inputted so the Linear Calculation can be re-done to see the
Seismic results.

The following results are obtained through the Calculation protocol of the Linear Calculation:

Dynamic loadcase: 2:LC2

Mode Freq. DETTY Sax Say Saz G(j) Fx Fy Mx My
[Hz] ratio Damp | coe [m/s?] [m/s?] [m/s?] [kN] [kN] [kNm] [kNm]
1 0.5253 0.0996 0.8176 0.1650 0.0000 0.0000 0.5001 0.1799 0.0000 0.0000 -1.7990
2 3.4262 0.0711 0.9086 0.3980 0.0000 0.0000 0.0154 0.1287 0.0000 0.0000 -0.3717
Level= 0.00 0.22 0.00 0.00 1.84

For both eigenmodes the Composite Modal Damping Ratio is calculated using equation (5.17).

As specified in the previous chapter, this Damping Ratio will be used to calculate the Damping Coefficient,
which influences the spectral accelerations. Using equation (4.13):

10

= |——=08176
M= 15+9,96)

= 10 _ 9087
"= 5r71)

As expected, since the modal damping ratios are higher than the default 5% used in the acceleration spectrum,
they will have a positive effect thus lowering the response of the structure.

More specifically, for the first eigenmode only 81,7% of the spectral acceleration will be taken into account and
for the second eigenmode 90,8%.

The spectral accelerations of the original example without damping can thus be multiplied by n :
Sax,1) = 0,2019 m/s? * 0,8176 = 0,1651 m/s?
Sax,2) = 0,4380 m/s? * 0,9087 = 0,3980 m/s?

These adapted spectral accelerations will thus influence the mode coefficients, the base shear, the overturning
moment, the nodal displacements and accelerations,...
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Example 11-3.esa:

In this example, non-proportional damping is accounted for in a seismic calculation using the CQC modal
combination method. To this end, the example Spectral_Analysis_3.esa from the previous chapter is
extended with dampers.

More specifically, a relative damping of 2%, 5% and 2% is inputted on the three columns starting from the base
of the structure.

As seen in the theory and the original example, the CQC method required the definition of a Damping
Spectrum. This damping spectrum was used for the calculation of the Modal Cross Correlation Coefficients
and to calculate the Damping Coefficient for each mode.

When however Non-Proportional Damping is used, the calculated Composite Modal Damping Ratios are used
instead of the data of the Damping Spectrum. This is illustrated in this example.

Step 1: functionality

The first step to take into account the damping is to activate the functionality Non-Proportional Damping on
the Functionality tab in the Project Data.

Step 2: damping group

The second step is the creation of a Damping Group:

¥ " Damping group X
A ek 2> & FH A
DG1 Name DG1

Description

Type of default damping Global default

Since a damper will be inputted on all elements, the choice of the default damping type is not relevant.
Step 3: dampers
After the creation of a Damping Group, Dampers can be inputted. A

relative damping of 2%, 5% and 2% is inputted on the three columns
starting from the base of the structure:

n
=

B
&4
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Step 4: mass matrix

As a final step, the Damping Group is assigned to the Mass Combination:
#° Combinations of mass groups X
A eBEk 2= & A -V

M1 [Name M1

Description

Contents of combination
MG1[-] 1.00
Damping group DG1

New Insert Edit Close

Step 5: linear calculation and calculation protocol

The non-proportional damping has now been inputted so the Linear Calculation can be re-done to see the
Seismic results.

The following results are obtained through the Calculation protocol of the Linear Calculation:

Dynamic loadcase: 2:LC2

Mode Freq. DETLT Sax Say Saz (<(6)) Fx Fy Mx My
[Hz] ratio Damp|coe [m/s?2]  [m/s2]  [m/s?] [kN] [kN] [kNm]  [kNm]
1 0.5253 0.0265 1.1432 0.2307 | 0.0000 0.0000 0.6993 | 0.2516 0.0000 0.0000 | -2.5154
2 3.4262 0.0330 1.0979 0.4809 | 0.0000 0.0000 0.0187 | 0.1556 0.0000 0.0000 | -0.4491
Level= 0.00 0.30 0.00 0.00 2.56

In the original example, a Damping Spectrum with a constant damping ratio of 2% was used. Due to the
inputted dampers, the calculated Composite Modal Damping Ratios of 2,64% and 3,30% are now used.

Using equation (4.13) the Damping Coefficients can be calculated:

= 10 1432
M= 5+265

- 1 _ 10976
2= 15+330)

As was the case in the original example, the damping ratios are lower than the default 5% used in the
acceleration spectrum, they will have a negative effect thus augmenting the response of the structure.

Since the calculated damping ratios are higher than the original 2%, the response will be less when compared
to the original example.

Second, the calculated Composite Modal Damping Ratios will be used for the calculation of the Modal Cross
Correlation Coefficients of the CQC-method.

This will be illustrated in a manual calculation.
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Step 6: manual calculation

In this paragraph, the application of the CQC-method using the calculated Composite Modal Damping Ratios
is illustrated for the global response of the Base Shear.

Mode 1:
w(gy = 3,3007rad/s
F1y = 0,2701kN

Mode 2:
W) = 21,5192rad/s
Fiz) = 0,1629kN

Using a spreadsheet, the Modal Cross Correlation Coefficients p;; are calculated with a damping ratio &;; of
2,64% for the first eigenmode and 3,30% for the second eigenmode.

Mode 1 2
1 1 0,00055202
2 0,00055202 1
N N
Riot = z Z Ri)-pij- Ry
i=1 j=1

R = (0,2701kN * 1 * 0,2701kN) + (0,2701kN * 0,00055202 * 0,1629KkN)
tot ™ 4+(0,1629kN * 0,00055202 * 0,2701kN) + (0,1629kN = 1 * 0,1875kN)

Reor = 0,315kN

The difference between these Correlation Coefficients and the original is very small which was to be expected
since the calculated damping ratios are close to the original 2%.
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Example 11-4.esa

In this example, a seismic analysis is carried out on a storage depot. The layout of the structure is given in the
pictures below. The depot is constructed with steel members manufactured of $235 according to EC-EN. On

the upper roof, a steel shell is used with thickness 20 mm.

On each floor level, concrete slabs are used with thickness 200 mm. The slabs are manufactured in C25/30

according to EC-EN.
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The diagonals are hinged in both directions. The column bases are also hinged though the anchors are
spaced such that the rotation around the Z-axis is taken as fixed.

The steel members of the depot have following cross-sections:
- Columns: IPE300
- Floor beams: HE200A
- Roof beams: IPE160
- Diagonals: L(ARC) 40x40x4

The vertical loads acting on the structure are:
- Load case 1: the self-weight of the depot
- Load case 2: a category E (storage) imposed load of 5 kN/m2 on all floor slabs.

The structure will be subjected to an earthquake loading in both X, Y and Z direction, using a Design Response
Spectrum according to Eurocode 8 for Ground Type A with a behaviour factor of 1,5. This means that the
spectrum for the internal forces will be divided by this value. The acceleration coefficient is 0,50.

For the dynamic calculation, the structural damping of the depot is taken into account. More specifically, a
logarithmic decrement of 0,025 is used for steel and 0,056 for concrete [22].

Step 1: functionality

The first step to take into account the damping is to activate the functionality Non-Proportional Damping on
the Functionality tab in the Project Data.

Step 2: mass group and masses

The second step is to create Mass Groups and then the creation of Masses.
Since the self-weight is automatically taken into account in a Combination of Mass Groups, only one Mass

Group is created here, a group to take the mass of the imposed load into account.
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Using the action “Create masses from load case” automatically generates masses from the already inputted

loads.
® ° Mass groups X
AP eBEk 0> & SFH A m Ky’
MG1 Name MG1
Description
Bound to load case Yes -
Load case LC2 - Imposed Load (Storage)
Keep masses up-to-date with loads
Actions
Create masses from load case >3
Delete all masses 35>
New Insert Edit Close
Step 3: damping groups

Before creating a Combination of Mass Groups, the damping is specified.

First of all, a Damping Group is created.
# " Damping group

A 4B B

DG1

Name

DG1

Description

Type of default damping

Material default

Since, in this example, the structural damping of the steel and concrete is taken into account, the Type of
default damping is set to Material default. This way, when no damper is inputted on an element, the default
damping value of the material will be used.

The damping values can be specified in the Material Library:

# ' Materials

A4 58

C25/30

$235

New

Insert

Edit

> @@ A -V
[Name €25/30
Code independent
Material type Concrete
Thermal expansion [m/mK] 0.00
Unit mass [kg/m*3] 2500.0
Density in fresh state [kg/m*3] 2600.0
E modulus [MPa] 31000.00
Poisson coeff. 0.2
Independent G modulus
G modulus [MPa] 12916.67
(Log. decrement (non-uniform dampi... 0.056 ]
Colour /7
Specific heat [J/gK] 6.0000e-01
Thermal conductivity [W/mK] 4.5000e+01
Order in code 4
Price per unit [€/m*3] 1.00
EN 1992-1-1
Characteristic compressive cylinder st... 25.00
Calculated depended values
Mean compressive strength fcm(28) ... 33.00
fem(28) - fck(28) [MPa) 8.00
Mean tensile strength fctm(28) [MPa]  2.60
fctk 0,05(28) [MPa] 1.80
fetle 0 QS(22) IMPal .30

Close

For the concrete, a logarithmic decrement of 0,056 is inputted, for the steel a value of 0,025.
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Step 4: mass matrix

The Mass Group and Damping Group can now be combined in a Combination of Mass Groups.

As specified in formula (2.9) all gravity loads appearing in the following combination of actions need to be
taken into account for an eigenmode calculation:

Z Gy + Z Vg Qi

For this example, with a Category E imposed load, ¢ is taken as 1,0 and Yz, as 0,8.
This gives a value of 0,8 for Yk,

Since the self-weight is automatically taken into account, the Combination of Mass Groups CM1 can be
formulated as 0,80 MG1:

# ° Combinations of mass groups X

AAaemBih 9= & A |V
M1 [Name cMm1

Description

Contents of combination
MG1[-] 0.80
Damping group DG1

New Insert Edit Close

As a final step, the Damping Group is assigned to the Combination of Mass Groups.
Step 5: seismic spectrum

Before creating the seismic load cases, the seismic spectrum needs to be defined through the main menu
Library / Seismic spectrums.

Instead of inputting a spectrum manually, the spectrum according to EC8 is chosen. In this example, the
spectrum for Ground Type A with a Behaviour Factor q = 1,5 is used for all directions:

# ' Code parameters X

ag - design accelera... 1.000
q - behaviour factor  1.500
beta 0.200
S, Tb, Tc, Td manuall... No - D:]:D:D:DI]I[DIH
Subsoil type A - = =
Spectrum type type 2 - o -
Direction Horizontal
Frequency[Hz] Direction factor 1

1 |0.00 I S - soil factor gEsh

£ 025 g™ Period

3 050 l | Tc

4 075 i |d 1.200 EN 1998-1:2004 - Eurocode

5 (1.00 1 Nnte NA not suinnorted

Bl 125 g Cancel — i

7 |1.50 Q

8 |1.75 0.57 0.73

9 |2.00 0.50 0.83 Code parameters

10 | 2.25 0.44 0.94

111 2.50 N.40 1.04 N Cancel

174 MJA — 2024/08/23



Step 6: seismic load case

The Seismic load cases can now be defined through the workstation “Load cases”, and “Load Cases”.
For the Seismic load case in the X-direction, the following parameters are used:

|Name | Lc3
Description Seismic X
Action type Variable -
Load group LG3 4
Load type Dynamic -
Specification Seismicity -
Parameters
Direction X
Direction X v
Response spectrum X EC8-h -
Factor X 1
* Direction Y
Direction Y
Direction Z
Direction Z
Acceleration factor 0.5
Overturning reference level [m] 0.000
“ Equivalent lateral forces
ELF method Disabled -
« Accidental eccentricity
Method Disabled -
“ Modal superposition
Type of superposition cQc v
Damping spectrum cQct v =
“ Multiple eigenshapes
Unify eigenshapes
“ Mode filtering
Mode filtering Disabled -

Mass in analysis
Signed results
Predominant mode
Master load case
Combination of mass groups

Stage for composite analysis model

Mass in analysis
+ Signed results
Predominant mode
Master load case
Combination of mass groups

Stage for composite analysis model
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Participating mass only .

None v
(@ )] -

Final stage, short term

Participating mass only -

None v
M1 -

Final stage, short term

The Coefficient of Acceleration is set to 0,5. As Type of evaluation the CQC-method is used.

In exactly the same way, the Seismic load cases ‘in the Y and Z-direction are defined:

Mass in analysis
“ Signed results
Predominant mode
Master load case
Combination of mass groups

Stage for composite analysis model

[Name JLca [Name: JLes
Description Seismic Y Description Seismic Z
Action type Variable v Action type Variable
Load group LG3 v e Load group LG3
Load type Dynamic - Load type Dynamic
Specification Seismicity Specification Seismicity
“ Parameters “ Parameters
“ Direction X Direction X
Direction X Direction X
« Direction Y * Direction Y
Direction Y ] Direction Y
Response spectrum Y EC8-h v L “ Direction Z
Factor Y 1 Direction Z M
“ Direction Z Response spectrum Z EC8-v
Direction Z FactorZ 1
Acceleration factor 05 Acceleration factor 0.5
Overturning reference level [m] 0.000 Overturning reference level [m] 0.000
“ Equivalent lateral forces Equivalent lateral forces
ELF method Disabled v ELF method Disabled
* Accidental eccentricity Accidental eccentricity
Method Disabled v Method Disabled
“ Modal superposition * Modal superposition
Type of superposition cac - Type of superposition cQc
Damping spectrum cQct - Damping spectrum cact
“ Multiple eigenshapes Multiple eigenshapes
Unify eigenshapes Unify eigenshapes
- Mode filtering Mode filtering
Mode filtering Disabled - Mode filtering Disabled

Participating mass only

None
cm1

Final stage, short term
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This steps have to be repeated for load cases that define the deformations (behaviour factor q is different).

Notes:
For the load case Seismic Z a new spectrum has to be defined with type vertical.

Three other EN-Seismic load cases have to be defined, the first 3 are for internal forces and 3 new (with g-
behaviour factor set to 1) for deformation. Each group of load cases has to get a load group with type “seismic”
& “together” and they must be placed in separate combinations.

According to Eurocode 8 [7] the action effects due to the combination of the horizontal components of the
seismic action may be computed using the following combinations:
Egax"+"0,3. Egqy" + "0,3. Egg,
0,3.Egax"+"Egay” + "0,3. Egqy
0,3.Egdx"+"0,3. Eggy" + "Egaz
Where:
« + » implies « to be combined with ».

Eeax represents the action effects due to the application of the seismic action along the chosen
horizontal axis x of the structure.

Eeay represents the action effects due to the application of the seismic action along the chosen
horizontal axis y of the structure.

Eesz represents the action effects due to the application of the seismic action along the chosen
horizontal axis z of the structure.

First of all, this implies that all Load cases must always be considered together in a combination. In SCIA
Engineer this can be done by putting both Seismic Load cases in a Load Group with relation Together.

" Load groups X
AiremEk 9o & M A
LG1 Name LG3
LG2 Relation Together
LG3 Load Seismic
New Insert Edit Close

Next, the combination for the Seismic calculation can be inputted. According to Eurocode 8 [7] this combination

is the following:
Z Gy + P+ Aggq + Z Wy Quii

Where Aed represents the accidental action, which is in this case the combined seismic action.

(5.22)

In SCIA Engineer, the EN-seismic type can be used for this purpose.
To fulfil the conditions of the Eurocode, 6 load combinations of this type are created:
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# ' Combinations X
A e @ ) * & Input combinations -
co1-f [Name co1
co2-f Description f
Co3-f Type EN-Seismic
Co4-d Structure Building
o Active coefficients v
COo6-d e
« Contents of combination
LC1 - Self-Weight [-] 1.00
LC2 - Imposed Load (Storage) [-] 1.00
LC3 - Seismic X [-] 1.00
LC4 - Seismic Y [-] 0.30
LC5 - Seismic Z [-] 0.30
Actions
Explode to envelopes >35>
Explode to linear >>>
Show Decomposed EN combinations >>>
New Insert Edit Delete Close

To be able to see the global extremum for the two combinations, two Results classes can be used:

B " Result classes X
A eBEK 2= & A By,
seism-f |Name seism-f
seism-d Description
“ List
CO1 - EN-Seismic
CO2 - EN-Seismic
CO3 - EN-Seismic
New Insert Edit Delete Close

Step 7: mesh setup

To obtain precise results, the Finite Element Mesh is refined through the main menu Tools / Calculation &

Mesh / Mesh Settings. The Average number of tiles of 1D elem
element is set to 0,25m.

ent is set to 10; the Average size of 2D

X

¥ " Mesh setup
Average number of 1D mesh elements on straight 1D members 10
Average size of 1D mesh element on curved 1D members [m] 0.250
[Average size of 2D mesh element [m] 0.250 ]

Connect members/nodes
4 Advanced mesh settings

‘ General mesh settings

Minimal distance between definition point and line [m] 0.001
Definition of mesh element size for panels Automatic
Average size of panel element [m] 1.000
Elastic mesh

Hanging nodes for prestressing

* 1D elements
Minimal length of beam element [m] 0.100
Maximal length of beam element [m] 100.000

Average size of tendons, elements on subsoil, nonlinear soil spring [m] ~ 1.000

B} 'C_)‘l 'g(
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Step 8: solver setup

The last step before launching the calculation is setting the amount of eigenmodes to be calculated. For this
example, five eigenmodes are chosen.
In the main menu Tools / Calculation & Mesh / Solver Settings, the number of frequencies is thus set to 5.

B Solver setup X

Name SolverSetup1
4 Advanced solver settings
“ General

Neglect shear force deformation ( Ay, Az >> A)

Bending theory of plate/shell analysis Mindlin -
Type of solver Direct -
Number of sections on average member 10

Warning when maximal translation is greater than [mm] 1000.0

Warning when maximal rotation is greater than [mrad] 100.0

Coefficient for reinforcement 1

Effective width of plate ribs
Initial stress
‘ Dynamics

Type of eigen value solver Lanczos -

l Number of eigenmodes 5 ]

Use IRS (Improved Reduced System) method

Mass components in analysis

' IQ\L F{ Cancel

Step 9: linear calculation and calculation protocol

All steps have been executed so the Linear Calculation can be started through the main menu Tools /
Calculation & Mesh / Calculate.

The Calculation Protocol for the Eigen Frequency calculation shows the following:

Mode Omega Period Freq. Wxi / Wyi / Wzi / Wxi_ R/ Wyi R/ Wzi_R/ Damp

[rad/s] [s] [Hz] Wxtot Wytot Wztot Wxtot R Wytot_ R Wztot_ R ratio
4.5955 1.3672 0.7314 0.9686 0.0000 0.0000 0.0000 0.0103 0.0000 0.0081
11.4189 0.5502 1.8174 0.0000 0.6682 0.0000 0.0190 0.0000 0.2860 0.0080
13.6430 0.4605 2.1713 0.0271 0.0000 0.0002 0.0000 0.3694 0.0000 0.0081
13.8204 0.4546 2.1996 0.0000 0.2709 0.0000 0.0003 0.0000 0.5272 0.0080
14,9368 0.4207 2.3773 0.0000 0.0000 0.0000 0.0000 0.0000 0.0004 0.0080

0.9957 0.9391 0.0002 0.0193 0.3797 0.8136

D (W(N |-

It can be seen that for both horizontal directions more than 90% of the total mass is taken into account in these
five modes so it is concluded that sufficient Eigenmodes have been calculated.

Through Deformation of nodes under 2D Members, the Deformed Mesh can be used to visualize the first
four Eigenmodes:
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1N .||I_( = L, '}(

Eigenmode 1:f=0,73Hz Eigenmode 2: f = 1,82Hz

+ e

Eigenmode 3: f=2,17Hz Eigenmode 4:_f =2,20Hz
The Calculation Protocol for the Linear calculation shows the results of the seismic calculation:

Dynamic loadcase: 3:LC3
Mode Freq. Damp Sax Say Saz

[Hz] ratio Damp | coe [m/s?] [m/s?] [m/s?]
0.7314 0.0081 1.3114 0.1809 0.0000 0.0000 4.4128 48.0082 0.0000 -0.0000

-

-302.1145
1.8174 0.0080 1.3134 0.4978 0.0000 0.0000 0.0000 0.0000 -0.0000 0.0000 -0.0000
2.1713 0.0081 1.3123 0.5940 0.0000 0.0000 -0.2748 4.4051 0.0000 -0.0000 42.6000
2.1996 0.0080 1.3131 0.6021 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0000 -0.0000
2.3773 0.0080 1.3135 0.6508 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0000 -0.0000
Level= 0.00 48.21 0.00 0.00 305.10

Dynamic loadcase: 4:LC4

u|bhiwN

Sax
Damp | coe [m/s?]

1 0.7314 0.0081 1.3114 0.0000 0.1809 0.0000 0.0000 0.0000 0.0000 -0.0000 -0.0000

2 1.8174 0.0080 1.3134 0.0000 0.4978 0.0000 -1.6335 -0.0000 91.1291 0.0000
-609.0984

3 2.1713 0.0081 1:3123 0.0000 0.5940 0.0000 -0.0000 0.0000 0.0000 -0.0000 0.0000

4 2.1996 0.0080 1.3131 0.0000 0.6021 0.0000 0.8587 0.0000 44.6772 -0.0000
-254.8292

5 2.3773 0.0080 1.3135 0.0000 0.6508 0.0000 0.0100 0.0000 0.0076 -0.0387 -0.0000

Level= 0.00 0.00 101.77 661.88 0.00

For each Eigenmode the Composite Damping Ratio has been calculated using the structural damping of the
steel and concrete.

The combinations can now be used to verify the structural elements.
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Chapter 12: DIRECT TIME INTEGRATION
12.1. Theory

The title may be misleading because normally in the literature, this name is used for a dynamic computation
without modal superposition. In SCIA Engineer, the eigenmodes are determined first and are used to uncouple
the equilibrium equations into a set of m uncoupled second order differential equations which are solved one
by one by direct time integration. The uncoupling is based on the properties given by equations.

Ol M.®; =0 sii# j

Ol Md; =1 sii=j
O M. D) = wf

In equation (3.1), a solution for y is assumed to be of the form:
y=¢.Q

Where ¢ is the matrix of eigenvectors (n*n) and Q is a vector which is time dependant.

Substitution in equation (3.1) gives:

M.$.Q+C.d.Q+K p.Q=F
(7.2)

When the equation is pre-multiplied with ¢T and the above equations are taken into account, one obtains:
Q+¢T.C.d.Q+0%2.Q=¢".F
(7.3)

This set of equations is still coupled because of the damping term. If however C-orthogonality is assumed (this

means that $7.C. ¢ reduces to only diagonal terms), then the equations are uncoupled and can be
solved separately. The global results are obtained by superposition of the individual results (7.1) is also the
exact solution if the assumption of C-orthogonality holds. If however, only a few eigenvectors (m<n) are used
in ¢ instead of all the eigenvectors, then the system of equations and the superposition of the solutions gives
a solution y which is an approximation of the exact solution.
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In SCIA Engineer, C-orthogonality is assumed and it is also assumed that all modal damping factors are
constant. This means that:

PT.C.d=2.w.E8;
(7.4)

The value of € is one of the input data and is called damping factor.

The number of eigenvectors that is taken into account is also specified by the user. This value is equal to the
number of eigenvectors computed in the eigenvalue computation.

The method used to solve each uncoupled second order differential equation is the Newmark-method. This
method is unconditionally stable but the accuracy depends on the time step. This time step has to be given by
the user. However, to help him in his choice, a value determined by the program will be used if the user does
not specify a value. This proposed value is computed as: 0,01 T

Where T smallest period of all the modes which have to be taken into account

This proposed value guarantees accuracy better than 1% over each period of integration of this highest mode.
In most cases, a larger time step can be used because the contribution of this last mode is small.

This brings us to the question about the number of modes that should be used. When the time dependent
terms on the left hand side of equation (7.3) are neglected, the solution for gj(a term of Q) is:

q; = E-(bjT-F
j
(7.5)

This indicates that the lowest eigenmodes (w; small) will contribute more than the highest modes (w; large), if
dynamic terms are neglected. This can give a first idea on how many modes to use.

A second criterion is the periodicity of F. Any mode which coincides with the loading frequency should be taken
into account.

Modal weight is a third criterion that can be used. If you add all modal weights in a particular direction together
and divides this result by 9.81*sum of nodal masses in the same direction, you obtain a value smaller than 1.
If this value is close to 1, it means that the higher modes will not contribute anymore. If, on the contrary, the
value is smaller than 0,9, one can doubt about the value of a subsequent modal superposition.
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12.2. Direct-Time Integration in SCIA Engineer

In SCIA Engineer, it's possible to input a dynamic function. This can be used for different purposes, for
example: harmonic loads, explosions, ... In this case, the user has to input a dynamic function which presents
the frequency in function of the time.

The following diagram shows the different steps which have to be performed for the time history calculation:

Activate the functionalities “Dynamics”
and « Dynamic time-history analysis »

A
Create a mass group

/\

Input masses Generate masses from static load cases

o~ -

Create a mass combination

!

Define a « Time » load function

!

Create a « Time » load case

!

Refine the Finite-Element mesh is required

!

Specify the number of Eigenmodes to be calculated

!

Perform a linear calculation

This functionality is only available in 32-bit version of SCIA Engineer!
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Example 12-1.esa

In this example an explosion is simulated on a concrete plate.

The plate has a dimension of 6x6 m and the thickness is 300 mm. The plate will be calculated according to the
EC-EN and is made of concrete grade C30/37. The four corners are supported by hinged supports.

Three load cases are introduced:
- Self weight
- Permanent surface load: -4 kN/m?2
- Variable point load: blast of -11 kN

Step 1: functionality

In the “Project settings”, activate the options « Dynamics » and « Dynamic time-history analysis »:
Project data

Basic data | Functionality | Actions Unit Set Protection

General Detailed

Property modifiers 4 !", ics

Model modifiers Modal & harmonic analysis
Parametric input Seismic spectral analysis

Climatic loads Dynamic time-history analysis v
Mobile loads Non proportional damping

Coaluilia.. Cail inbmensbina

Step 2: mass groups and masses

Open the menu ‘Dynamics’ and a mass group will be created here. For this, the permanent surface load of
-4 kN/m? is used. For this, you can click on the ‘create masses from load case’ button.

8 " Mass groups X

HeBEk o> & @FH A mRv,
MG1 | Name MG1

Description

Bound to load case Yes -
Load case BG2 - Permanent v

Keep masses up-to-date with loads S

Actions

Create masses from load case S>> ]

Delete all masses S>>

New Insert Edit Close

A surface mass of 407,7 kg/m? is created.
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Step 3: mass matrix

Next, a combination of mass groups can be created:

B " Combinations of mass groups

AiaeBi 2= & A

M1 |Name

M1

Description
Contents of combination
MG1 [-]

New Insert Edit

1.00

- Y

Close

Step 4: dynamic load function

After the creation of masses, the explosion can be simulated by means of a dynamic load function.

Go to ‘Libraries > Loads > Dynamic load functions’.

Here you can input the input of load coefficients in function in time.

Two types of functions can be input, namely a base and/or modal function. If both are introduced, the user can

choose if these functions have to be multiplied or summarized.
4 types of functions can be chosen: constant, linear, parabolic or sinusoidal.

In our example a modal function is created with linear lines:

Dynamic Load Function

Name Composition type
DLF1 Multiply ® Sum
COMPOSE
| POO Function 1
B type delta t [s] f1 f2 3 shift
:q 1 [lin ~ 0.050 0.000 0000 0000  0.000
i)z Ay I 2 lin - 0078 1.000 0.000
g :g Lumﬂw 3 lin - 0.024 0.000 -0.620
e -0.6200 4 lin - 0048 -0.620 0.000
g FUNCTIOI‘{ })0 * lin ~ 0.000 0.000 0.000 0.000 0.000
| 1 ——
g :é ”[HHHH“ type delta t [s] f1 f2 f3 shift
0 20,6200 * | const - 0.000 0.000 0.000 0.000 0.000
FUNCTION 2 t[s]
0
e a 2 B <
S S =) (=) =)

F [Hz]
0.000

Cancel

This function has to be attributed to a point load. We will do this in step 6.
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Step 5: a “general dynamics” load case

A load case is introduced to simulate this explosion.
The action type is « Variable » and the type of load « Dynamic ».

B’ Load cases X
BB 0= & - A BRY;
BG2 - Permanent Description Explosion
BG3 - Explosion Action type Variable v
Load group LG3 > 5
Load type Dynamic -
Specification General dynamics v
Parameters
Total time [s] 1.51
Auto integration step V]
Output step [s] 0.30
Logarithmic decrement 0.16
Master load case None v
Combination of mass groups M1 v
Actions
Delete all loads >>>
Copy all loads to another loadcase >>>
New Insert Edit Delete Close

For the load group, the user can choose a special case, namely « Accidental »:

8 Load groups X
Aremic o> & FHE A -V

LG1 Name LG3

LG2 Relation Exclusive

LG3 Load Accidental

New Insert Edit Close

Next, the specification has to be selected and the type General dynamics has to be chosen for a time history
calculation.

For this, we need some extra parameters:
- « Total time » : The total time of the dynamic analysis.
- « Integration step » : When “Auto” is checked, then 1/100 of the smallest period is taken. When “Auto”
is not checked, then the user is allowed to select an integration step value.
- « Qutput step » : Step for generating the load cases. The value need to be bigger or equal at the
integration step.
- « Log Decrement » : Damping defined as logarithmic decrement.
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Step 6: input of loads which follow the load combination

In this step, you will create of a nodal force. Only nodal forces can be linked to a dynamic function.
The value of the nodal force, will be multiplied with the coefficients in the function to achieve the final force in
function of time.

A point force of -11 kN is input in the middle of the plate. The user has the option to attribute the dynamic
function DLF1 to this load.

' Point force in node X
F Direction 74 =
Type Force =
Angle [deg]
Value - F [kN] -11.00
Function DLF1
‘ Geometry
Fx @ ( : ) System GCS -
Fy
Fz

Cancel
Step 7: mesh setup
Before the calculation, the mesh is refined to get precise results.
#° Mesh setup X
MeshSetup1

Average number of 1D mesh elements on straight 1D members 1

Average size of 1D mesh element on curved 1D members [m] 0.200

Average size of 2D mesh element [m] 0.200

Connect members/nodes

Advanced mesh settings

General mesh settings
Minimal distance between definition point and line [m] 0.001
Definition of mesh element size for panels Automatic v
Average size of panel element [m] 1.000
Elastic mesh
Hanging nodes for prestressing
1D elements
Minimal length of beam element [m] 0.100
Maximal length of beam element [m] 100.000
Average size of tendons, elements on subsoil, nonlinear soil spring [m] 1.000
Generation of nodes in connections of beam elements v

B & & Concel

186 MJA — 2024/08/23



Step 8: linear calculation

Now, the linear calculation can be performed.

When the calculation is finished, new load cases are created which present the influence of the blast on the
structure on each output step (the output time must always be smaller than ‘Total time’, so in this example, we
used 1,51 s as total time to get an output at 1,50 s):

B’ Load cases X
AAesBEKI» 20> & @zd ~ -1 Y
BG1 - Dead Load [Name BG3
BG2 - Permanent Description Explosion
BG3 - Explosion Action type Variable -
BG3.0 - 0.00/1.51 Load group LG3
R e o -
e e Specification General dynamics -
BG3.3 - 0.90/1.51
BG3.4 - 1.20/1.51 Lo
BG3.5 - 1.50/1.51 Total time [s] 1.51
Auto integration step 4
Output step [s] 0.30
Logarithmic decrement 0.16
Master load case None v
Combination of mass groups M -

To find the most extreme result, there load cases can be input in a Result class.
Step 9: results

The eigen frequencies are shown in the “Results” menu:

Eigen frequencies

N f ) ? T
[Hz] [1/s] [1/s?] [s]
Mass combination : CM1
1 7.96 50.00 2500.06 0.13
2 1798 [112.95 |[12757.03 | 0.06
3 1798 [112.95 [12757.07 | 0.06
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Other results, like for example deformations, can be regarded for the different output steps:
- After 0,3 seconds:

Uz/uz[mm]

- After 0,6 seconds:

—
E
£

=1
0.000 N
2

-0.010 5

-0.020

-0.030

-0.040

-0.050

-0.060

-0.070

-0.080

-0.090
-0.100
-0.116

- After 0,9 seconds:

°
o
8
Uz/uz[mm]

K14 -0.001
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- After 1,2 seconds:

- After 1,5 seconds:
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0.058
0.052
0.048
0.044
0.040
0.036
0.032
0.028
0.024
0.020
0.016
0.012
0.008
0.004
0.000

Uz/uz[mm]

0.000
-0.004
-0.008
-0.012
-0.016
-0.020
-0.024
-0.028
-0.032
-0.036
-0.040
-0.044
-0.048
-0.052
-0.057

Uz/uz[mm]

189



Advanced Training — Dynamics

Or we can ask the result for the class which has been generated for the load cases.

B Result classes X
Al eBEK 2= & A -1V
RC1 | Name | rC1
BG3 - Explosion Description
|
New Insert Edit Delete Close 1
Displacement of nodes (1) x \fg} V 7
S
K14 Name Displacement of no...
Selection Current -
Type of loads Class -
K13 Class BG3 - Explosion ~ ..
Values Uz -
Extreme Node -
12
If you choose refresh, then you can see Uz for each 0,3 seconds in the selected node.
Displacement of nodes
Linear calculation, Extreme : Node
Class : BG3
Uz [mm]
0.250
0.200 /N
0.150,
0.100 \
0.050, oo Minimum
N Maximum
-0050 P e
-0.100 i
-0.150
(= - o~ m < w
o o o ] o o [I
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If we would set the output step to 0,01 s in the dynamics load case, then you would get 150 load cases.

‘ B Load cases X
ANReBkI 0o 8 E@ & 3K
BG1 - Dead Load » | [Name | G3
BG2 - Permanent Description Explosion
BG3 - Explosion Action type Variable v
BG3.0 - 0.00/1.51 Load group LG3 -
BG3.1- 0.01/:.5: - — =
e b Specification General dynamics -

BG3.3 - 0.03/1.51

BG3.4 - 0.04/1.51 i e

BG3.5 - 0.05/1.51 Total time [<] 151

BG3.6 - 0.06/1.51 Auto integration step v

BG3.7 - 0.07/1.51 Output step [s] 0.01

BG3.8 - 0.08/1.51 Logarithmic decrement 0.16

BG3.9 - 0.09/1.51 Master load case None .

BG3.10- 0.10/1.51
BG3.11-0.11/1.51
BG3.12- 0.12/1.51
BG3.13- 0.13/1.51
BG3.14 - 0.14/1.51
BG3.15- 0.15/1.51 o
BG3.16 - 0.16/1.51

Combination of mass groups m1 -

e Delete all loads >>>
el ’ o o v | Copy all loads to another loadcase >>>
New Insert Edit Delete Close

And as a result, the “deformation in nodes” graph would give more detailed representation:

Displacement of nodes

Linear calculation, Extreme : Node
Class : BG3

Uz [mm]

0.400_
0300

0.200

0.100
Minimum

0000 Maximum
-0.100
-0200
-0300) 0-262

B B 5 g 7 E G g 0

2 Y Y o o o o

a 2 2 2 2 g S g
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Example 12-2.esa

In this example a running load over a bar is simulated:
N

Nk Ald I/ nv5 NE N7 NS NG I/ p10
T‘T,“ v Y NZ V N3 y V4 V V5 V V6 y N  NVE Y VS V VIO
AN

Pamm’

The beam has a length of 20 m and a section HE200A. The beam will be calculated according to the EC-EN
and is made of steel S 235. The edges are supported by hinged supports.

Two load cases are introduced:
- Self weight
- Variable dynamic load: point loads of -100 kN on every 2 m over the beam

Step 1: functionality

In the “Project settings”, activate the options « Dynamics » and « Dynamic time-history analysis ».

Step 2: mass groups

Open the menu ‘Dynamics’ and a mass group will be created here. For this, no mass is inputted. Only the self
weight is taken into account.

Step 3: mass matrix

Next, a combination of mass groups can be created.

B " Combinations of mass groups X
Ae@BE 9= & A -V
M1 [Name cMm1

Description

Contents of combination
MG1 [-] 1.00

Step 4: dynamic load functions
After the creation of masses, the running load can be simulated by means of dynamic load functions.
In the menu Library / Loads / Dynamic load functions, the input of frequencies in function in time is asked.

Two types of functions can be input, namely a base and/or modal function. If both are introduced, the user
can choose if these functions have to be multiplied or summarized.
4 types of functions can be chosen: constant, linear, parabolic or sinusoidal.

In this example 9 modal functions are created with linear lines:
- DLF1is 1,00 from 0,2s to 0,4s
- DLF2is 1,00 from 0,4s to 0,6s
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B " Dynamic Load Functions X

AR eBEk 0 & @E A mRv;
DLF1 A
DLF2
DS COMPOSED
DLF4 1.0 1.00
DLF5 0.8
= - 2 0.6
Name |DLF3 04
Compositi... sum v 0.2
0.0
" FUNCTION 1 | .1.00

0.8
0.6
04
0.2
0.0

JNCTION 2 t[s]
0

S = N i pos v o 5

o o o o o o o o

New Insert Edit Close

Each function will be attributed to a different point load (cf step 6):
- DLF1 to the first point load from the left.
- DLF2 to the second point load from the left.

These 9 load functions will be used to simulate the effect of a point load moving from left to right over a time
period is simulated. On each point (every 2m) the point load stays for a time of 0.20sec. So it takes 2 seconds
for the point load to cross the whole beam.
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Step 5: general dynamics load case

A load case is introduced to simulate this running load.
The action type is Variable and the type of load Dynamic

For the load group, the user can choose a special case, namely Accidental.

# ' Load groups X
AN2BL oo & @ A 3k,
LG1 Name LG2
LG2 Relation Exclusive
Load Accidental

Next, the specification has to be selected and the type General dynamics has to be chosen for a time history
calculation. After choosing general dynamics, some extra parameters have to be defined.

- Total time [s]: The total time of the dynamic analysis.

- Integration step: When “Auto” is checked, then 1/100 of the smallest period is taken. When “Auto”
isn’t checked, then the user is allowed to select an integration step value.

- Output step [s]: The step is used to determine on which points in time results must be generated.
These will be saved in new generated load cases.

- Log Decrement: Damping defined as logarithmic decrement.

B ' Load cases X
Al eBEI» o= & R A |V
LC1 - Poids propre lName I LC3
LC3 - Dynamique Description Dynamique
Action type Variable
Load group LG2
Load type Dynamic
Specification General dynamics
Parameters
Total time [s] 2.50
Auto integration step Y
Output step [s] 0.03
Logarithmic decrement 0.05
Master load case None
Combination of mass groups M1
Actions
Delete all loads >>>
Copy all loads to another loadcase >>>
New Insert Edit Delete Close
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Step 6: input of loads

In this step, nodal forces will be inputted. Dynamic load functions can only be linked to nodal forces. Since
they are ‘nodal’ forces, the user must provide internal nodes to place these internal forces on. Every 2 m an
internal node has to be created on the beam. On each of these nodes a point force of -100 kN is set. The first
point force from the left is linked to DLF1, the second to DLF2,...
This models the movement a single point load over the beam left to right over the beam in a total time of 2 sec.

8" Point force in node

IL:; F
®
@ Fx

Fz¢

L@

Direction

Type

Angle [deg]

Value - F [kN]

Function
Geometry
System

11

-100.00

DLF9 - 5

GCS

Cancel

Step 7: linear calculation

Now, the calculation can be performed.

When the calculation is finished, new load cases are created which present each output step:

Load cases

Ao

LC1 - Poids propre

LC3 - Dynamique
LC3.0 - 0.00/2.50

LC3.1 - 0.03/2.50
LC3.2 - 0.05/2.50
LC3.3 - 0.08/2.50
LC3.4 - 0.10/2.50
LC3.5-0.13/2.50
LC3.6 - 0.15/2.50
LC3.7 - 0.18/2.50
LC3.8 - 0.20/2.50
LC3.9 - 0.23/2.50
LC3.10 - 0.25/2.50
LC3.11 - 0.28/2.50
LC3.12 - 0.30/2.50
LC3.13 - 0.33/2.50
LC3.14 - 0.35/2.50
LC3.15 - 0.38/2.50
LC3.16 - 0.40/2.50
LC3.17 - 0.43/2.50
LC3.18 - 0.45/2.50
17210 N A0/ BN
New Insert

Edit

X
> & FE A -V
|Name | LC3
Description Dynamique
Action type Variable -
Load group LG2 - =
Load type Dynamic -
Specification General dynamics -
Parameters
Total time [s] 2.50
Auto integration step &
Output step [s] 0.03
Logarithmic decrement 0.05
Master load case None -
Combination of mass groups m1 -
Actions
Delete all loads >35>
Copy all loads to another loadcase >>>
Delete Close
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To find the most extreme result, these load cases are automatically input in a result class:

' Result classes >4
A ek 2= & A
LC3 [Name Lc3
Description
“ List
LC3.0
LC3.1
LC3.2
LC3.3
LC3.4
LC35
LC3.6
LC3.7
LC3.8
LC3.9
LC3.10
LC3.M
LC3.12
LC3.13
LC3.14
LC3.15
LC3.16
LC3.17
LC3.18
LC3.19
J 10220
New Insert - Edit | Delete ' Close -
Step 8: results
The eigen frequencies are shown in the results menu:
Eigen frequencies
N f [5) ? 1]
[Hz] [1/s] [1/s?] [s]
Mass combination : CM1
1 5.03 31.62 |999.93 0.20
2 19.78 [124.28 |15445.22 0.05
3 43.18 |[271.31 |73608.14 0.02
4 64.59 |405.79 [164668.49 | 0.02
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Other results, like for example deformations, can be regarded for the different output steps:
- After 0,5 second:

N
T,IALI\ v N2 N3 N4 NS N6 N7 NE N9 NI0 N11
ey
Te)
00
|
- After 1 second:
N
T.IM\ v N2 N3 N4 N5 N6 N7 NE N9 NI10 N7
W A
M
|
- After 1,5 seconds:
N
TIM\ v N2 N3 N4 N5 N6 N7 NE N9 NI10 N1
b
(@)
To)
I
- After 2 seconds:
N
Tlm\ v N2 N3 N4 N5 N6 N7 N8 N9 N10 N17
©
d.
|
- After 2,4 seconds:
N
v N2 N3 N4 N5 N6 N7 NE N9 NI10 N17T

-15.5

- The result class shows the envelope of all possible results over time:
N

1 mn z 8 N9 N1O N11

N2 NI

—-105.0 mm
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It is also possible to see the result in a certain point for all load cases in one picture. By this it is possible to
see the result over the time.

Consider for instance the vertical displacement of the middle node N6.

Properties v o X
Displacement of nodes (1) v \ﬂ V ,7
g X
Name Déplacement des noeuds
Selection Current -
Type of loads Class -
Class LC3 v
Values Uz -
Text output Graph -
Extreme Node -

The deformation of the middle node in function of the time is shown in the result preview:
Displacement of nodes

Linear calculation, Extreme : Node
Class : LC3

Uz [mm]
200

2t
ool f \
K

-200] % f
b,

e

—H—

|
-800] 1

e o %
| .5

-100.0]

A i

Ot~

1302
1.C3.10)
1C3.20]
1.C3.30]
1.C3.40]
1.C3.50]
1.C3.60f
1C3.70]
1L.C3.80)]
1L.C3.90]
=}

his result clearly represents the vibration of the middle point over time.
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Chapter 13: VORTEX SHEDDING : KARMAN VIBRATION

In this chapter, the transverse vibration of cylindrical structures due to wind is examined.

First the theory is explained in which reference is made to the Harmonic load since Vortex shedding is a special
case of harmonic loading.
The theory is then illustrated by an example of a steel chimney.

13.1. Theory

One of the most important mechanisms for wind-induced oscillations is the formation of vortices
(concentrations of rotating fluid particles) in the wake flow behind certain types of structures such as chimneys,
towers, suspended pipelines,...

At a certain (critical) wind velocity, the flow lines do not follow the contours of the body, but break away at
some points, thus the vortices are formed.

These vortices are shed alternately from opposite sides of the structure and give rise to a fluctuating load
perpendicular to the wind direction. The following figure illustrates the vortex shedding for flow past a circular
cylinder. The created pattern is often referred to as the Karman Vortex Trail :

When a vortex is formed on one side of the structure, the wind velocity increases on the other side. This results
in a pressure difference on the opposite sides and the structure is subjected to a lateral force away from the
side where the vortex is formed. As the vortices are shed at the critical wind velocity alternately first from one
side then the other, a harmonically varying lateral load with the same frequency as the frequency of the vortex
shedding is formed.

The frequency of the vortex shedding fv is given by:

£ = S.v
vTod
(13.1)
With:
S non-dimensional constant referred to as the « Strouhal Number ».

For a cylinder, this is taken as 0,2.
D width of the body loaded by the wind (m).

For a cylinder, this equals the outer-diameter.
v mean velocity of the wind flow (m/s).

The manner in which vortices are formed is a function of the Reynolds number Re, which is given by:
Re = 0,687.v.d.10°
(13.2)

In general, large Reynolds numbers mean turbulent flow.
The Reynolds number characterizes three major regions:

- Sub-critical:

300 < Re < 10°
- Super-critical:
10° < Re < 3,5.10°
- Trans-critical:
3,5.10° < Re
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For chimneys with circular cross section the flow is either in the supercritical or trans-critical range for wind
velocities of practical interest.

If the vortex shedding frequency coincides with the natural frequency of the structure (resonance) quite large
across-wind amplitudes of vibration will result unless sufficient damping is present. This principle was already
discussed in a previous chapter.
In this case, formula (13.1) can be rewritten to calculate the critical wind velocity at which resonance occurs:
Verit = 5.d.f

(13.3)

With:
f natural frequency of the structure.

The across-wind forces per unit length caused by the vortex shedding can be approximated by the following
formula:

1
PL(D) = 5P d. vZir- Ce(t)
(13.4)

With:
P air density taken as 1,25kg/m?3
Ci(t) lift coefficient that fluctuates in a harmonic of random manner and depends of the Reynolds
number. The following figure shows this relation when Ct is proportional to the mode shape.

L —

o
o
-
ak=
-
-
1 -
-

Re

If the vortex shedding is taken as harmonic, equation (13.4) can be written as:
1
P.(t) = P,.sin(wyt) = 7P d.vZi. C.sin(2. . £,)
(13.5)
Assuming a constant wind profile, the equivalent modal force due to the fluctuating lift force of equation (13.5)
is given by:
1 H
P(t) = P..sin(w,t) = 5P d.vZ.sin(2.m f")'_f Ce(z) {$(2)}dz
0

(13.6)
With:
&(z) modal shape at height z
H total height of the structure
As seen in a previous chapter, the dynamic amplitude Y at resonance can be written as :
Ys
T
(13.7)
The static deformation Ys is given by:
o h_ P
ST K Mw?
(13.8)
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M is the equivalent modal mass of a prismatic member given by:
H
M= f m(z). {p(z)}?dz
0
(13.9)

With:
m(z)  mass per unit height.

When combining formulas (13.7) and (13.8) the maximum response of a SDOF system subjected to a harmonic
excitation may be written as:
P 1

Y=—t —
M. w? " 2€

(13.10)
It follows that when the vortex shedding occurs with the same frequency as the natural frequency of the
structure, the maximal amplitude is given by:
1 H
v j-P-d-Vgrit-fo Ci(@){d(z)}dz 1
w. [ m@{p@)2dz 28

(13.11)

When it is assumed that the mass per unit height is constant and that the lift coefficient is proportional to the
mode shape, formula (13.11) can be simplified to the following:
p.d3.C,

Y=——77—7—
16.12.52.m.

(13.12)

This equation may be used as a first estimate of likely response of the structure.
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13.2. Karman vibration in SCIA Engineer

In SCIA Engineer, the Vortex Shedding was implemented according the Czech loading standard.

The effect is only taken into account if the critical wind velocity calculated by formula (13.3) is between a
minimal and maximal value. These two extremes can be defined by the user. According to the Czech loading
standard, these values are taken as 5 m/s and 20 m/s.

In addition to formula (13.11), in SCIA Engineer it is possible to specify the length of the structure where the
Von Karman effect can occur. For each geometric node of the structure, it is possible to relate a length of the
cylinder to the node. This implies that, in order to obtain precise results, the structure should be modeled with
sufficient geometric nodes.

By default the effect can occur over the entire height of the structure however, when there are specific
obstacles on the surface of a chimney for example, these obstacles will hamper the formation of the vortices
and thus reduce the Von Karman effect. In practice, this is exactly the solution to suppress vortex-induced
vibration: the fitting of special ribs on the surface of the cylinder.

The following diagram shows the required steps to perform a Vortex Shedding calculation :

Activate the « Dynamics » functionality

y

Create a mass group

/\

Input masses Generate masses from static load cases

o~

Create a mass combination

!

Create a Karman Vibration load case

!

Input Karman loads (lengths)

!

Refine the Finite-Element mesh if required

!

Specify the number of eigenmodes to be calculated

!

Perform a linear calculation

This diagram will be illustrated in the following example.
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Example 13-1.esa:

In this example, a steel chimney is modeled with a fixed base.

The chimney has an outer-diameter of 1,2 m and a thickness of 6 mm. The total height is 30 m and the structure

is manufactured in S 235 according to EC-EN.

To take into account the weight of insulation, electrical cables and other non-structural elements, a distributed

mass of 55 kg/m is inputted.

No specific structural measures are taken to prevent the vortex shedding thus the entire length of the chimney

must be taken into account for the Von Karman vibration.

To this end, the chimney is modeled as a cantilever built up as 30 members to create sufficient geometric
nodes. Each node (except the base and top) will be assigned a chimney length of 1m.
For the logarithmic decrement of the chimney, a value of 0,025 is used.

One static load case is created: the self-weight of the structure.

Fo
<0p

Step 1: functionality

30000

The first step in the Karman Vibration calculation is to activate the functionality Dynamics on the Functionality

tab in the Project Data.
Step 2: mass groups

The second step is to create a Mass Group:
# " Mass groups

ek 2 & - A

MG1 - Additional Weight Name

Description
Bound to load case
Load case

Keep masses up-to-date with loads

Actions
Create masses from load case

Delete all masses

New Insert Edit
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MG1

Additional Weight
Yes

LC1 - Self-weight

v

Close
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Actually, this mass group doesn’t contain anything, since the self-weight is automatically taken into account.
But to do dynamic calculation, at least one Mass Group needs to be defined.

In this mass group, we are going to place some additional masses. This will be added to the mass coming
from the self weight (which is always and automatically taken into account).

Step 3: masses

After the Mass Group has been created; the distributed mass of 55 kg/m can be inputted on all members:

Step 4: mass matrix

Next, the Mass Group is put within a “Combination of Mass Groups”, which can be used for defining the
harmonic load.

# ' Combinations of mass groups X

BiaeseBk 2= & A B Ry,
M1 [Name M1

Description

Contents of combination
MG1 - Additional Weight [-] 1.00

New Insert Edit Close
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Step 5: Karman vibration load case

After creating a Mass Combination, a Karman vibration load case can be defined through Load cases,

Combinations > L

oad Cases.

The « Action Type » of the Load Case is set to « Variable ».

The « Load Type » can then be changed to « Dynamic ».
Within the “Specification” field, the type of dynamic load can be set, in this case Karman vibration.

- The “logarithmic decrement” was given to be 0,025.

- The “Diameter of the tube” was 1,2m.

- The “Wind direction” is defined in the Global Coordinate System. A direction of 0,00 deg specifies the
global X-axis. This implies that the Karman vibration will occur in a direction along the Y-axis
(perpendicular to the wind direction).

- As specified in paragraph 6.2 the minimal and maximal wind velocities are set to 5 m/s and 20 m/s
respectively. Vortex shedding will only occur if the critical wind velocity is between these two limits.

- The option “Select eigenshape” can be used to manually specify for which eigenmode the Vortex
shedding needs to be calculated. When this option is left to ‘Automatic’, SCIA Engineer determines the
representative mode automatically (which is the one with the biggest modal participation factor in the
relevant direction).

Since the wind direction is set along the global X-axis, the representative mode will be a mode shape along

the global Y-axis .

¥ Load cases

PIELIE 4 Im
LC1 - Self-weight
LC2 - Von Karman

New Insert Edit
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X
C EHd A \Y4
[Name Lc2
Solver index 2
Description Von Karman
Action type Variable
Load group LG2
Load type Dynamic
Specification Karman vibration
Parameters
Logarithmic decrement 0.025
Diameter of the tube [m] 1.200
Wind direction [deg] 0.00
Minimal wind velocity [m/s] 5.000
Maximal wind velocity [m/s] 20.000
Select eigenshape Automatic
Master load case None
Combination of mass groups M1
Actions
Delete all loads > > >
Copy all loads to another loadcase >>
Delete Close
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Step 6: Karman load

The parameters of the load case have been defined, what is left is to specify the length of the structure where
the Von Karman effect can occur.

As indicated in a previous paragraph, SCIA Engineer allows relating a length of the chimney to each geometric
node. This load can be inputted through Load > Point Force > Karman Load

As no specific measures were taken to prevent vortex shedding and since the chimney was inputted as
30 members, each node is assigned a length of 1 m.

Additional nodes are made at 0,25m from the base and top. These nodes also get Karman loads assigned to
them of 0,50 m.

Step 7: mesh setup

To obtain precise results for the dynamic calculation, the Finite Element Mesh is refined. The “Average number
of tiles of 1D element” is set to 5 through “ Mesh Setup”:

B ' Mesh setup X
Name MeshSetup1
Average number of 1D mesh elements on straight 1D members 5 ]
Average size of 1D mesh element on curved 1D members [m] 1.000
Average size of 2D mesh element [m] 1.000

Connect members/nodes
Advanced mesh settings
General mesh settings
Minimal distance between definition point and line [m] 0.001
Definition of mesh element size for panels Automatic
Average size of panel element [m] 1.000
Elastic mesh

Hanging nodes for prestressing

1D elements

Minimal length of beam element [m] 0.100
Maximal length of beam element [m] 100.000
Average size of tendons, elements on subsoil, nonlinear soil spring [m] 1.000
Generation of nodes in connections of beam elements v

Generation of nodes under concentrated loads on beam elements

Generation of variable eccentricities on members instead of constant ones

Division on haunches and arbitrary members 5

Division for integration strip and 2D-1D upgrade 50

Mesh refinement following the beam type None

Method of haunch export Constant parts

-~ ol O,

206 MJA — 2024/08/23



Step 8: solver setup

The last step before launching the calculation is setting the amount of eigenmodes to be calculated. The default
value in “ Solver Setup” is 4. This is sufficient for this example.
B Solver setup X

Name SolverSetup1
“ Advanced solver settings
“ General
Run one nonlinear combination
Neglect shear force deformation ( Ay, Az >> A) ]
Type of solver Direct

Number of sections on average member 10
Warning when maximal translation is greater than [mm] 1000.0
Warning when maximal rotation is greater than [mrad] 100.0
Coefficient for reinforcement 1
Print time in Calculation Protocol %
“ Initial stress
Initial stress
“ Dynamics
Type of eigen value solver Lanczos
e — )
Use IRS (Improved Reduced System) method
Enable advanced modal superposition for seismic load cases v
Mass components in analysis
“ Soil
“ Soilin
Step for soil/water pressure [m] 0.500
Soil combination None
Maximum soil interaction iterations 10
B & & Cancel

Step 9: linear calculation and results

All steps have been executed so the “Linear Calculation” can be started through “Calculation”.

The “Calculation Protocol” for the Eigen Frequency calculation shows the following:
Mode Omega Period Freq. Wxi / Wyi / Wzi / WxiR / WyiR/ Wz R/

[rad/s] [s] [HZ] Wxtot Wytot Wztot Wxtot R Wytot R Wztot_R

1 7.4354 0.8450 1.1834 0.6152 0.0000 0.0000 0.0000 0.3755 0.0000
2 7.4354 0.8450 1.1834 0.0000 0.6152 0.0000 0.3755 0.0000 0.0000
3 46.0816 0.1363 7.3341 0.1905 0.0000 0.0000 0.0000 0.1977 0.0000
4 46.0816 0.1363 7.3341 0.0000 0.1905 0.0000 0.1977 0.0000 0.0000
0.8057 0.8057 0.0000 0.5733 0.5733 0.0000

The details of the Karman Vibration calculation can be found in the “Calculation Protocol” for the linear
calculation:

Karmans vibration is analyzed for eigen shape 2

Maximum horizontal modal translation [m]  0.02397

Critical wind velocity [m/s2] 7.10

Reynolds number 585346.91

Drag coefficient Ct 0.39

Load on cylinder at point of max displacement [N/m] 14.60

As expected, the Vortex shedding was analyzed for the second eigenmode, the mode with largest mass
participation in the Y-direction.

The Maximum and Reduced loads are intermediate results used to calculate the across-wind forces.
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The maximum horizontal translation for the second eigenmode can be found through “Deformation of Nodes”
(note that the value has no relevance, the direction however is very important):

Displacement of nodes

Eigen solution, Extreme : Global
Selection : All

Mass combinations : CM1/2 - 1.18
Modal shapes are normalized, so that the generalized modal mass of each mode is equal to 1kg.

pde D 2

N31 CM1/2-1.18 0.0 24.0 0.0 =31 0.0 0.0
N1 CM1/2 - 1.18 0.0 0.0 0.0 0.0 0.0 0.0
N20 CM1/2-1.18 0.0 12.1 0.0 -1.0 0.0 0.0

In the same way, the total deflection of the top of the chimney caused by the Karman Vibration can be shown:
Displacement of nodes

Linear calculation, Extreme : Global

Selection : All
Load cases : LC2
Node Case Ux Uy 174 Fix Fiy Fiz
[mm] [mm] [mm] [mrad] [mrad] [mrad]
N1 LC2 0.0 0.0 0.0 0.0 0.0 0.0
N31 LC2 0.0| -143.2 0.0 6.5 0.0 0.0
N28 LC2 0.0 3235 0.0 6.5 0.0 0.0

Because of this large translation at the top, at the base of the chimney considerable stresses will occur.

As specified in a previous chapter, a combination of type “Envelope” provides the possibility for considering

both sides of the vibration amplitude since a vibration is always in both directions.

An envelope combination is created for the chimney to evaluate the stresses at the base:
# " Combinations

x |

ﬂ 3’? ! Eﬁ ) 5 Input combinations

co1 [Name o1
Description
Type Envelope - ultimate
« Ci of ¢ bination
| LC1 - Self-weight [-] 1.00
[ LC2 - Von Karman [-] 1.00
Actions
Explode to linear >33
New Insert Edit Delete Close
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The “Member Stresses” for the lower member of the chimney give the following normal stresses for the

combination:
Stress

Linear calculation, Extreme : Global

Selection : All
Combinations

: Co1

Values : Normal -, Normal +, Shear, von Mises, Fatigue, Kappa, Sigma Y

Normal - Normal + Shear von Mises Fatigue Kappa Sigma Y
[MPa] [MPa] [MPa] [MPa] [MPa] [-1
Bl 0.000 | CO1/1 -72.6 0.0 72.6 0.0
B1 0.000 | CO1/2 68.0 0.0 68.0 0.0
Bl 0.000 | CO1/1 =2.3 -2.3 1.9 4.0 0.0
Bl 0.000 [CO1 -72.6 68.0 140.6 -0.94
B30 1.000 | CO1 0.0 0.0 0.0 -1.00
B30 0.938 [CO1 0.0 0.0 0.0 0.75

A stress range of 140,6 MPa will lead to significant fatigue problems after even a low amount of cycles. This
is one of the most reported types of failures due to Vortex shedding.

A solution to this problem is the fitting of a helix type rib to prevent the correlation of the vortices (and thus
lower the chimney-length which should be considered for the Von Karman effect). The disadvantage of such
arib is that it increases the drag force.

Since the Vortex shedding is a state of resonance, the amplitude is damping dependent as explained
previously. Another solution is thus to increase the damping by installing a tuned mass damper system.
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