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Introduction

1.1. Professional training

This course will explain the non linear and stability calculations in SCIA Engineer. Most of the modules
necessary for this calculation are included in the Professional edition.

For some options a concept edition is sufficient or for other options an expert edition or an extra
module is required. This will always be indicated in the corresponding paragraph.

1.2. Introduction to non linear and stability

In general, when modelling structures, a linear approach is followed. It can however be that certain
parts of the structure do not behave linearly. Examples include supports or members which only act in
compression or tension. This is where non-linear analysis is required.

Another example is when performing structural analysis following the latest codes (i.e. Eurocode 3).
When performing manual calculations, in most cases a linear 1st Order analysis is carried out.
However, the assumptions of such analysis are not always valid and the codes then advise the use of
2" Order analysis, imperfections, etc.

SCIA Engineer contains specialized modules covering non-linear and stability related issues. In this
course, the different aspects of these modules are regarded in detail.

In the first part of the course, the non-linear modules are looked upon. First the 2" Order calculation
methods are explained and integrated with Eurocode 3. Next the local nonlinearities are examined
including tension-only members, pressure-only supports, cable analysis, friction supports, etc.

The non-linear part of the course is finished with an insight on how to apply imperfections according to
Eurocode 3 using SCIA Engineer.

The second part of the course examines Stability calculations: the determination of the elastic critical
buckling load of a structure. This analysis can be used to calculate the buckling length of a part of the
structure or to determine if a 15t Order analysis may be carried out.

The final chapter provides some common failure messages which occur during a non-linear analysis.
This chapter points out the most likely causes of singularities and convergence failures.
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Non-Linear behaviour of Structures

2.1. Type of Non Linearity

The non-linear behaviour of structures can be categorised in three different groups:

- Geometrical non-linearity: The displacements are dependent on the strains in a non-linear
way.

- Physical non-linearity: The stresses are dependent on the strains in a non-linear way.
- Local non-linearity: The geometry or the boundary conditions of the structure change during
the solving of the equations.
These three types of non linearities will be examined in detail in the following chapters.

For a complete overview and theoretical background, reference is made to [1], [2], [3], [4], [5] and [6].

To be able to use non linearities in SCIA Engineer this functionality should be enabled in the Project
data dialogue:

Property modifiers
Parametric input
Clirnatic loads
Mahbile loads
Dynamics
Stability

Menlinearity

<

Structural model
IFC properties
Prestressing
Bridge design
Excel checks

Document

And in the right column the necessary nonlinearity should be activated.

2.2. Non Linear Combinations

During a linear analysis, the principle of superposition is valid: the load cases are calculated and the
combinations are composed after the calculation.

For a non-linear analysis, this principle is not valid anymore. The combinations have to be assembled
before starting the calculation. In SCIA Engineer, this is done by defining Nonlinear Combinations.

EE Load cases, Combinations
o JJE Load Cases




A non-linear combination is defined as a list of load cases where each load case has a specified
coefficient.

A e BE 9= & A mRY;

NC1 [Name | NC11

NC2 Description

MC3 Solver index (1

NCa Type Ultimate -

NCS Contents of combination

:EE LC1 - Self weight [-] 133

NCO LC2 - Self weight roof [-] 135

NC10 LC3 - Snow [-] 1.05

MC11 LC5 - Wind +¥ [-] 1.50
Bow imperfection Mone -
Globkal imperfection Mone -

Mew from combination New Insert Edit Delete Close

In addition, for each non-linear combination it is possible to specify an initial Bow Imperfection and/or a
Global Imperfection. Imperfections are regarded in Chapter 6.

Note

- The combinations defined as linear combinations can be imported as non-linear combinations. It is however
important to keep in mind that during a non-linear calculation no combinations are generated. This implies for
example that code specific combinations must first be exploded to linear combinations. These linear
combinations can then be imported as non-linear combinations.

This method makes sure that the code coefficients and relations between the load cases are correctly taken into
account for the non-linear calculation.

- To view the extreme results for the non-linear calculation, the non-linear combinations can be grouped
within a result class.

- The amount of non-linear combinations is limited to 1000.
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Geometrical Non-Linearity — also possible with Concept edition

The options described here for the geometrical non linearities are also possible with a Concept
edition. So the Professional edition is not required for this chapter, except for the stability calculation
(and the calculation of acr as explained shortly in this chapter).

The non-linear behaviour is caused by the magnitude of the deformations.

Take for example a simple beam: during a linear analysis, the relative deformation of the end nodes, in
the direction of the beam axis is dependent on the strain of the beam.

Due to a curvature of the beam, the distance between the end nodes is changed also. This implicates
that the total strain is now not solely dependent on the displacement.

This relation can now be looked upon for different cases:
a) Small displacements, small rotations and small strains;
b) Large displacements, large rotations and small strains;
c) Large displacements, large rotations and large strains;

In SCIA Engineer, methods a) and b) have been implemented for the analysis of geometrical non-linear
structures. Method c) is less common in structural applications (for example rubber).

Method a) is called the Timoshenko method; method b) is called the Newton-Raphson method.

To activate the Geometrical Non-Linearity, the functionality Nonlinearity > Geometrical nonlinearity
must be activated.

e roject data *

Basic data | Functionality | Actions  Unit 5et  Protection

Property modifiers Nonlineanty | o
Parametric input Bearn local nonlinearity i

Climatic loads Support nenlinearity/basic soil... I
Mebile loads Initial imperfections I
Dynamics |Ge0metrica| nonlinearity v [ I
Stability General plasticity O !
Monlinearity [+ | Cables I
Structural medel O Friction support/Soil spring I
IFC properties Sequential analysis I
Prestressing Subsoil I
Bridge design Pile Design [MEN method] I
Excel checks Pad foundation check I
Document Steel I

Plastic hinge analysis
Fire resistance checks
Steel connections

Scaffolding




3.1. Overview

Global analysis aims at determining the distribution of the internal forces and moments and the
corresponding displacements in a structure subjected to a specified loading.

The first important distinction that can be made between the methods of analysis is the one that
separates elastic and plastic methods. Plastic analysis is subjected to some restrictions.

Another important distinction is between the methods, which make allowance for, and those, which
neglect the effects of the actual, displaced configuration of the structure. They are referred to
respectively as second-order theory and first-order theory based methods.

The second-order theory can be adopted in all cases, while first-order theory may be used only when
the displacement effects on the structural behavior are negligible.

The second-order effects are made up of a local or member second-order effects, referred to as the P-
d effect, and a global second-order effect, referred to as the P-A effect.

P
H—'L'P*T
B
* |
L
|
ﬂl;' * A
M(x) = Hx Mx)=Hx+P§+Pa x/L
M(L) = HL Mh)=HL+Pa
First Order Theary Secand Order Theary

On the next page an overview of the global analysis following the EN 1993-1-1, chapter 5, will be
given:

o Allthe rules in this overview are given in the EN 1993-1-1 art. 5. For each step the rule will
be indicated. The first rule (ocr > 10) will be explained in EN 1993-1-1 art. 5.2.1(3).

o Inthis overview 3 paths are defined:
= Path 1: In this path a first order calculation will be executed

= Path 2: In this path a second order calculation will be executed with global (and
bow) imperfections.

= Path 3: In this path a second order calculation will be executed with the buckling
shape of the construction as imperfection.

o The calculation will become more precise when choosing for a higher path.

o The lower paths will result in a faster calculation, because a first order calculation can be
executed without iterations, but this first-order theory may be used only when the
displacement effects on the structural behavior are negligible.

o Inthe next paragraphs the rules in this overview will be explained.

To take into account all non-linearities in the model, non-linear load combinations are made.
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Structural Frame Stability

5.2.1(3)
o > 10 x
ves No 522(3)b 5.22(3)a| 53.2(11)
Global Imperfection ¢
5.3.2(6)
No Y
4y >3 5.2.2(5) NEeq > 25% N, 7y 2 MNer
R (member)
g if gginall
required members

1* Order Analysis 2" Order Analysis
O
Increase sway
effects with: . No Members Yes
1 h with €o
1
1— =
aCI’
5.2.2(3)c 52.2(7)b
I» based on a global I, taken equal to L
buckling mode

Stability Check in plane

52.2(7)a

Stability Check out of plane + LTB Check

Section Check

With:  mer Elastic critical buckling mode.
L Member system length
Ib Buckling Length

Path 1a specifies the so called Equivalent Column Method. In step 1b and 2a “Ir may be taken equal
to L”. This is according to EC-EN so the user does not have to calculate the buckling factor =1.
In further analysis a buckling factor smaller than 1 may be justified.



3.2. Alpha critical

The calculation of alpha critical is done by a stability calculation in SCIA Engineer. For this calculation a
Professional or an Expert edition is necessary, so with the concept edition is this not possible. The
stability calculation has been inputted in module esas.13.

According to the EN 1993-1-1, 15t Order analysis may be used for a structure, if the increase of the
relevant internal forces or moments or any other change of structural behaviour caused by
deformations can be neglected. This condition may be assumed to be fulfilled, if the following criterion
is satisfied:

_ Fer
Aer = F
Ed

= 10 for elastic analysis

With:  dcr: the factor by which the design loading has to be increased
to cause elastic instability in a global mode.

Fed: the design loading on the structure.

Fer: the elastic critical buckling load for global instability,
based on initial elastic stiffnesses.

If acr has a value lower then 10, a 2™ Order calculation needs to be executed. Depending on the type
of analysis, both Global and Local imperfections need to be considered.

EN1993-1-1 prescribes that 2" Order effects and imperfections may be accounted for both by the
global analysis or partially by the global analysis and partially through individual stability checks of
members.

The calculation of Alpha critical and also Path 3 from the diagram of the previous paragraph will be
explained in the chapter “Stability”.

Example: Imperfections2D.esa

The diagram is now illustrated on a steel frame including a global imperfection. This benchmark project
is examined in detail in references [20] and [23].

A stability calculation for the frame gives a critical load factor acr of 13,17 > 10

This indicates that 2" Order effects are negligible and a 15t Order analysis may be used for the
structure.

Path 1a can thus be followed and a 15t Order Calculation is executed.

A Steel Code Check gives the following results:

- {,/{/’/T’r—“i\l\zhﬁ}_“ ;,_%fﬁ}/)/_’i‘ﬁd\}\}_,‘

-

.

L

When Path 2a is followed, using a Global imperfection and a 2"® Order Calculation according to
Timoshenko, the Steel Code Check shows the following:
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It can be seen that the results are practically the same which is as expected since the acris larger than
10.

The input of imperfections and execution of a Stability Calculation will be regarded in detail further in
this course.

3.3. Imperfections

When performing a non-linear calculation, it is possible to input initial geometrical imperfections: initial
deformations and curvatures. These imperfections take into account the fact that the structure is for
example a bit inclined instead of perfectly vertical or that the members are not completely straight.

To input geometrical imperfections, the functionality Nonlinearity > Initial imperfections must be

activated.

|
Basic data | Functionality | Actions Unit 5et  Protection
Property modifiers |Nonlinearity 2
Parametric input Beam local nonlinearity
Climatic loads Support nonlinearity/basic soil... l
Maobile loads | Initial imperfections vl r l
Dynamics Geometrical nonlinearity I
Stability General plasticity l
MNanlinearity vl Cables l
Structural model Friction support/Soil spring l
IFC properties Sequential analysis l
Prestressing Subsoil l
Bridge design Pile Design [NEN method] l
Excel checks Pad foundation check l
Document Steel l
Plastic hinge analysis
Fire resistance checks
-- Steel connections
Scaffalding v
Cancel

For each non-linear combination, the imperfections can then be set.




B " Monlinear combinations *

A Bk 22 & A mRY;
NC1 Mame MNCT
Description
Type Ultimate -
Contents of combination
LCT - Self weight [-] 1,00
Bow imperfection MNone -

Global imperfection None A

Simple inclination
Inclination functions

Deform. from loadcase

Mew from combination New Insert Edit Delete Close

Difference is made between Global imperfections (Initial deformations) and Bow Imperfections
(Curvatures).

3.3.1. Global frame imperfection ¢

The nodal coordinates define the geometry of the structure. Using initial deformations as global
imperfections, additional displacements (in X and Y direction) can be inputted. These displacements
will thus alter the geometry.

The structure itself can therefore be modelled as straight; the inclination is given by the global
imperfection.

The global imperfection can be set in the following ways:

- Simple Inclination

Deformation from Load case

- Inclination Functions

Buckling Shape

Simple Inclination

The imperfection is defined as a simple inclination. The inclination is defined in mm per m height of the
structure. More specifically a horizontal displacement is given in the global X and/or Y direction which
has a linear relation to the height (global Z direction).

Deformation from Load case

The imperfection is defined by the displacements of a specified load case. This option can be used to
take into account for example the imperfections due to the self-weight. Especially for slender beams
this can be important.
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Inclination Functions

The imperfection is defined by a deformation-to-height curve, similar to the Simple Inclination. The
curve can then be assigned to an appropriate non-linear combination.

These inclination functions are entered through “Main -> Library -> Structure, Analysis -> Initial
deformations”:

Libraries | Tools Modify Tree  Plugins Setup Window  Help

M Materials - e [y Y -
el PR eow Y
K Catalogue blocks
B named item

Structure, Analysis ¥ E§ Cross-section list

Steel b BB Fabricated Css, Product range

Subsoil, foundation k H‘f Manlinear functions

Loads ¥ lj Initial deformations

Drawing tools b [ﬁ; System lengths and buckling groups
@] Attributes definition : :

When the type is set to Manual input, the function can be inputted by specifying the height and the
horizontal displacement.

MName

Function X
Type
Manual input ~
12 12
10]
g]
6 Pos[m] Deforlmm]
1 0000 0,0
2 5000 25,0
4 3 10,000 60,0
4 12,000 1100
2 * 0,000 0,0
0
T a F 9 =& & &
| |
oK Cancel

The type Factor allows a factor to be inputted at each height. In the definition of a non-linear
combination, a manually inputted function can then be multiplied by this factor function.

When choosing EN 1993-1-1 art. 5.3.2(3), the inclination function is calculated according to the code.

As shown during the 2™ Order calculations, Eurocode 3 ref.[27] defines the global imperfection the
following way:

10



" |
o = 1.
P =55 An Am
2 2

) an = 7 but ;Sap <10
o au=J05(1+2)
With:

e h The height of the structure in meters

e m The number of columns in a row including only those columns which carry a vertical

load Ned not less than 50% of the average value of the vertical load per column in
the plane considered.

Mame

Function X |

Type
EN 1993-1-1 art, 5.3.2(3) +

Basic imperfection value : 1/
17 |200 |

Height of structure :
n

Mumber of columns per plane :
E |

QK Cancel

These parameters can be inputted after which the imperfection is automatically calculated:

11
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MiemEE 9> & &l A ARy,

Function

Mame |Functinn

Type EM 1993-1-1art. 5.3.2(3) -~

Basic imperfection value: 1/ [-] 200,00

Height of structure: [m] 20,000

Mumber of celumns per plane: 4

o 0,00263500

oy [-] 0,67

Ut [-] 0,79 |

i

Mew Close

An inclination function is defined independent of an axis. This means that the same function can be
used to define the displacement in X in function of Z, or Y in function of Z, or X in function of Y,...

In the definition of a non-linear combination, it can be specified between which axes the function
defines a relation.

Az

L 4 ColN e AP - Y

MNC1X ~ | Name MCTX ~

MNC2X Descripticn

NC3X Solver index (1)

NCa % Type Ultimate .

NCS X Contents of combination

MNCE X .

NCT X LC1 - Self Weight [-] 1.35

NCE ¥ LC2 - Weight Cladding [-] 1.35

MCO ¥ Bow imperfection Simple curvature -

MC10 X Global imperfection Inclination functions - r

MNC11 X f 0.005

MC12 X 1/f 200

NC13 X dx inclination functions

MNC14 X 7 Def X . I'

NCTSY Factor MNone -

MNC16Y

NCITY sense . ’

NC18Y v Nene .

NC1S Y dy inclination functions

NC20 ¥ z None -

MC21 Y X Mone <

MC22Y dz inclination functions

MC23 ¥ v X MNone it
i New from combination New Insert Edit Delete Close ||

The Sense option allows the imperfection to be applied in the positive or negative direction (according
to the chosen global direction). This way, a non-linear combination can for example be copied, where
the original has a positive sense and the copy a negative sense to take into account both possibilities.

12



Instead of the Sense, the Factor function can be applied as specified above. The values of the factor
function will be multiplied with the values of the defined inclination function.

Buckling Shape

As an alternative to Global and Local imperfections, paragraph 5.3.2(11) of Eurocode 3 Ref.[27] allows
the use of a buckling shape as a unique imperfection. For this option the Professional or Expert edition
is necessary. This option has been inputted in module esas.13.

To input geometrical imperfections, the functionality Nonlinearity > Initial imperfections and Stability

must be activated.

Basic data | Functionality

Actions  Unit 5et  Protection

Property modifiers

Pararnetri

cinput

Climatic loads
Mobile loads

Dynamics

Stability

Monlinearity

Structural

IFC propel

model

rties

Prestressing
Bridge design
Excel checks

|Nnnlinea|ity | G

Beam local nenlinearity i

Support nonlinearity/basic soil...

|Ir1itia| imperfections o |

Geometrical nonlinearity
General plasticity

Cables

Friction support/Seil spring
Sequential analysis
Subsoil

Pile Design [MEM method]
Pad foundation check
Steel

Plastic hinge analysis

Fire resistance checks
Steel connections
Scaffolding

L

The calculation of the buckling shape through a stability calculation will be looked upon in Chapter 6.

Since the buckling shape is dimensionless, Eurocode gives the formula to calculate the amplitude minit

of the imperfection. In Ref.[29] examples are given to illustrate this method. In this reference, the

amplitude is given as follows:

Minit =€ * E.l Nc;] “Mex
y ~ler,max
i
e =a-(1-02) '\I\/'l:kk : 1_17“(%)2

with: A= N%Cr

Q
1

for

21>02

The imperfection factor for the relevant buckling curve.

13
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Nrk

Ncr
MRk

MNer

77cr,rmx -

The reduction factor for the relevant buckling curve, depending on
the relevant cross-section.

The characteristic resistance to normal force of the critical cross-
section, i.e. NpiRk.

Elastic critical buckling load.

The characteristic moment resistance of the critical cross-section,
i.e. Mel,rk OF Melrk @s relevant.

Shape of the elastic critical buckling mode.

Maximal second derivative of the elastic critical buckling mode.

The value of ninit can then be entered in the field Max deformation.

A g BE 2 & A mRy,
NCT [Name | NC1
Description
Solver index (0
Type Ultimate -
Contents of combination
P-LCT[-] 1.00
Bow imperfection Mone -
Global imperfection Buckling shape -
Stability 51 -
Eigen shape 1
Max deformation [mm] 524

New

Insert Edit Delete Close

This procedure will be illustrated in further in this course in the Chapter 6 concerning Stability.

3.3.2. Initial bow imperfection eo

During a linear calculation, the members are taken to be ideally straight. Using bow imperfections, a
local curvature can be defined for each element. A normal force in a member will thus lead to additional
moments. These additional moments shall only be taken into account for members with compressive

forces.

To obtain correct results using bow imperfections, it is required to refine the number of 1D mesh

elements.

The local imperfection can be set in the following ways:

- Simple Curvature

- According to Buckling Data

14



SCIA Engineer will automatically apply the curvature in the following way, which is in most cases the
de-favourable sense:

After the first iteration step, the deflection in the middle determines the sign of the initial bow
imperfection. If there is no deflection the alternating pattern is used and the beam will deform with a
sinusoidal form through its nodes.

Simple Curvature

Using this option, a curvature can manually be inputted. This curvature will be used for all members in
the project. This method is quite convenient when the same type of cross-section (buckling curve) is
used throughout the project like for example scaffolds, framework,...

According to Buckling Data

A bow imperfection according to buckling data allows the user to specify different curvatures for each
used buckling data. In the System lengths and buckling settings properties of a member, the bow
imperfection can be set, first for the span y-y and then for z-z.
B System lengths and buckling settings m] X
@ P AFEEE &AH
Settings | Results
Name BG1

Buckling span Deflection span

Deflection y = zz v
2= I 7 Deflectionz = y¥ ~
yz= 72z ~

LTB= zz ~

Active buckling constraints
Span settings

Buckling length factors Settings per span for y-y axis

ky factor Calculate M Sway y-y

1
Sway y¥ From setup 2

Member imperfection in 2nd order analysis

Bow imperfection 0y no bow imperfectic =
EN 1993-1-1 Table 5.1 — elastic
EN 1993-1-1 Table 5.1 - plastic

EN 1993-1-1 Table 5.1 - elastic - if required

EN 1993-1-1 Table 5.1 - plastic — if required
manual input of bow imperfection
no bow imperfection

Advanced settings

{
ry
w\\\\"‘“

Save Cancel

As seen during the 2" Order calculations, Eurocode 3 Ref.[27] defines the initial bow imperfection
using the following table:

15
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AN Buckling curve | elastic analysis | plastic analysis
acc. to Table 6.1 e/ L e /L
ap 1/350 1/300
a 1/300 1/250
b 1/250 1/200
C 1/200 1/150
0 d 1/150 1/100

Where L is the member length.

When the options EN 1993-1-1 Table 5.1 elastic/plastic are chosen, SCIA Engineer will check the
buckling curve of the member and will apply the specified imperfection automatically on the member.
This imperfection is always applied which corresponds to Path 2c of the diagram seen during the 2"
Order calculations.

The options EN 1993-1-1 Table 5.1 elastic/plastic — if required will apply the imperfection only if the
normal force Neq in @ member is higher than 25% of the member’s critical buckling load N¢r as specified
in Eurocode. This corresponds to Path 2b of the diagram.

When selecting Manual input of Bow Imperfection, the imperfection can manually be inputted using
the tab System lengths and buckling settings.

PP AEEEBE. BH.

Settings | Results

Name BG1
Buckling span Deflection span
Deflection y = zz v
2= |zZ T Deflectionz = yy -

yz= |zz -

LTB= zz -~

Active buckling constraints
Buckling length factors Settings per span for yy axis

ky factor Calculate - Sway y-y ely [mm]
1 25

Sway y¥ From setup -

Member imperfection in 2nd order analysis

‘ | Bow imperfection ely manual input of be

B
ry
\l\\““q‘

Advanced settings

Save Cancel
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This way, the imperfection can be manually inputted for each member. This is in contrast to the Simple

Curvature where the same bow imperfection is applied to all members.

When using bow imperfections it is important to set correct reference lengths for buckling since these

lengths will be used to calculate the imperfection.

Example: Imperfection_Manual.esa

In this project, the principle of a bow imperfection is illustrated for a simple beam.

The beam is modelled once as ideally straight (B1). Next the beam is modelled as curved with a
deflection at midpoint of 200mm (B2). In the third case, the beam is taken as straight and a bow

imperfection of 200mm is manually set through the Buckling Data (B3).

B1

F1/ =500

B2
s = F3/-5.00

B3

F2 / —5.00

The tab System lengths and buckling settings of B3 shows the following:

@ P AFEEERE. AR,

Settings | Results
Name BC2
Buckling span Deflection span

-y Deflection y = zz -
zz2= ZI * Deflection z = yy -
yz= Iz -

LTB= zz -~

Active buckling constraints

B—3 Span settings
( Buckling length factors Settings per span for y+ axis
ky factor Calculate - Sway y-y el,y [mm]
1 [+ 200,0
Sway yy Custom <

Member imperfection in 2nd order analysis

Bow imperfection ey manual input of be *

111 (EREbaat.. |

Advanced setfings

Save

Cancel
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The three beams are loaded by a normal force of 5 kN. Those with a deflection of 200 mm, are
expected to have a moment of 1 kNm in the middle of the beam.

The moment diagram after a non-linear calculation shows the following:

B1

F1/ —5.00

i AN

F3/ —5.00

I F2 / —5.00

As expected, the beam B1 does not produce a bending moment. Both the curved beam and the beam
with imperfection yield the 1 KNm.

This example shows that the bow imperfection corresponds to a curved calculation model.

Example: Imperfection_Self Weight.esa

A tube on two supports is loaded by its self weight and a compression load of 20 kN.
The tube is manufactured in S235, has a cross-section RO 48,3 x 3,2 and length 5m.
A linear calculation results in a bending moment of 0,109 KNm:

™~

L

0,109 kNm

This moment is caused entirely by the self weight of the tube:

Area: 453 mm? = 0,000453 m?2
Volumetric mass: 7850 kg/m3
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Length: 5m

= Loading caused by the self weight: 7850 kg/m3 x 0,000453 m2 x 9,81 m/s?2
= 34,88 N/m = 0,03488 kN/m

= Moment caused by the self weight: (0,03488 kN/m x 5m x 5m) / 8 = 0,109 kNm

The self weight causes a deformation of 11,659mm

N
L\)”

—11,659 mm

Due to the fact that the self weight causes this deformation, the compression force of 20 kN will lead to
an additional moment.

To see this effect in detail, a non-linear analysis is carried out which takes into account the deflection

caused by the self weight. The deformation of the self weight can thus be set as a Global
Imperfection.

Al gBEk = & A MRy
NCT [Name NCT
Description
Type Ultimate -
Contents of combination
LC1 - Self Weight [-] 1,00
LC2 - Compression Force 20kM 1,00
Bow imperfection Mone -
Global imperfection Deform. from loadcase -
Load case LET -
New from combination New Insert Edit Delete Close

The non-linear calculation results in a moment of 0,342 kNm
~N

i

0,342 kNm

This value can be calculated as follows:

Imperfection due to the self weight: 11,659mm = 0,011659m
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Compression force: 20 kN

= Additional Moment: 20 kN x 0,011659m = 0,23318 kNm
Moment caused by the self weight: 0,109 kNm

= Total moment: 0,109 kNm + 0,23318 kNm = 0,342 kNm

It is clear that taking into account the deflection of the self weight has a large influence on the results.
In this example, the bending moment increases with more than 200%. Especially for slender beams the

imperfection due to self-weight can be important.

3.3.3. Example Global + Bow imperfection
In this chapter a general example of the Global and bow imperfections in SCIA Engineer.

Example: Steel_Depot.esa

To illustrate the use of imperfections, both sway imperfections and bow imperfections are inputted on
the columns of a steel depot.

The structure has the following layout:

The diagonals have been inputted as Tension only members.
Inclination functions are defined According to the code so the initial sway is calculated

automatically:
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B |nitial deformations et
A sBEi o> & EH a -V
Def X
Def_ Y
Type EM 1993-1-1art. 5.3.2(3) -~
Basic imperfection value: 1/ [-] 200,00
Height of structure : [m] 6,000
Mumber of columns per plane: 10
o 0,00302800
oy [-] 0,82
2 [-] 0.74
MNew Insert Edit Close

The System lengths and buckling groups of the columns is edited to specify Bow Imperfections EN

1993-1-1 Table 5.1:

Ace e

o & - A

Column

Mame

Column

Mumber of parts
Description

Member(z) material

ky factor

kz factor

Point of load application
Mer

Steel, other
Factor

Factor

In shear center

Calculated

Bow imperfection ey
Bow imperfection e,z

EM 1993-1-1 Table 5.1 - elastic
EM 1993-1-1 Table 5.1 — elastic

New Insert

Edit Delete

yy 77

P14
148

Close

Since Global and Local imperfections are used for the columns, a buckling check needs not to be
executed conform Path 2c of the diagram seen during the 2" Order calculations. To take this into

account in SCIA Engineer, the buckling factors can be manually set to a low value so buckling will not

be normative.
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The Fundamental ULS combination according to Eurocode can then be exploded to linear
combinations which can be imported as Non-linear combinations. The Bow imperfection is set
According to Buckling Data and the Global Imperfections are set through the Inclination functions.

Since sway imperfections need to be considered in one direction at a time, the non-linear combinations

are taken once with the sway in X-direction and once with the sway in Y-direction.

| B2 emB 9 & u miy)

®
NCTX [Name NCT X
NC2X Description
NC3 X Type Ultimate -
NCAX Contents of combination
NC3X LC1 - Self Weight [-] 135
:Eii LC2 - Weight Cladding [-] 1,35
NCB X Bow imperfection According to buckling data -
NCO X Global imperfection Inclination functions -
NC10 X dx inclination functions
NC11X z Def_X -
NC12 X Factor MNeone -
NC13 X Sense + -
NC14 X % None .
NC13Y dy inclination functions
NC16Y

z MNone -
NC17Y
NCI8 Y X MNeone -
NC19 Y dz inclination functions
NC20Y X Mone -
NC21Y ¥ None 2
NC22Y
NC23Y
NC24Y
NC25Y
NC26Y
NC27Y
NC28Y
New from combination New Insert Edit Delete Close |

If required, this number of combinations can de doubled to change the sense of the sway
imperfections.

To obtain correct results for the Bow imperfections, the finite element mesh is refined.
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Name MeshSetupl

Average number of tiles of 1d element 5 {
Average size of 2d element/curved element [m] 1,000

Advanced mesh settings

General mesh settings

Minimal distance between definition peint and line [m] 0,001

Definition of mesh element size for panels Automatic -
Average size of panel element [m] 1,000

Elastic mesh

Hanging nodes for prestressing v |
1D elements

=i Cancel | |

A 2" Order calculation can then be carried out using Timoshenko’s method.

The Steel Code check for the mid columns yields the following result.

Sy

Since both global and local imperfections have been inputted, only the Section check and the Lateral
Torsional Buckling check are relevant. In this example, member B22 produces the largest check on the
compression and bending check.

3.4. The second order calculation

3.4.1. Timoshenko

The first method is the so called Timoshenko method (Th.II.O) which is based on the exact
Timoshenko solution for members with known normal force. It is a 2" order theory with equilibrium on
the deformed structure which assumes small displacements, small rotations and small strains.
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When the normal force in a member is smaller than the critical buckling load, this method is very solid.
The axial force is assumed constant during the deformation. Therefore, the method is applicable when
the normal forces (or membrane forces) do not alter substantially after the first iteration. This is true
mainly for frames, buildings, etc. for which the method is the most effective option.

The influence of the normal force on the bending stiffness and the additional moments caused by the
lateral displacements of the structure (the P-A effect) are taken into account in this method.

This principle is illustrated in the following figure.

P
H
- T
l
.' X
x|
L
|
|
0‘77 i 777
M(x) = Hx M(X) =Hx + P& + P Ax /L
ML) =HL M(L)=HL + P A
First Order Theory Second Order Theory

The local P-8 effect will be regarded further in this course.

If the members of the structure are not in contact with subsoil and do not form ribs of shells, the finite
element mesh of the members must not be refined.

The method needs only two steps, which leads to a great efficiency. In the first step, the axial forces
are solved. In the second step, the determined axial forces are used for Timoshenko’s exact solution.
The original solution was generalised in SCIA Engineer to allow taking into account shear
deformations.

The applied technique is the so called ‘total force method’ or ‘substitution method’. In each iteration

step, the total stiffness of the structure is adapted and the structure is re-calculated until convergence.
This technique is illustrated in the following diagram.
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Calculate Kg

Calculate Kg

\ 4 A

Solve Ku=F

No

Convergence
inu?

Yes

)

In this figure, the stiffness K is divided in the elastic stiffness Keg and the geometrical stiffness Kg. The
geometrical stiffness reflects the effect of axial forces in beams and slabs. The symbol u depicts the
displacements and F is the force matrix.

The criterion for convergence is defined as follows:

Z(uazc,i + u32/,i + ugz) - Z(uyzc,i—l + ujzz,i—l + ug,i—l)

2 2 2
z:(ux,i + uy,i + uz,i

< 0,005/(precision ratio)

With: Ux,i The displacement in direction x for iteration i.
Uy,i The displacement in direction y for iteration i.
Uz, The displacement in direction z for iteration i.

This convergence precision (Precision ratio) can be adapted in the solver setup:
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Mame SolverSetupl d
Specify load cases for linear calculation
Specify combinations for nonlinear calculation

Advanced solver settings

General
Meglect shear force deformation [ Ay, Az »> A)

Type of solver Direct - |
Mumber of sections on average member 10 I
Warning when maximal translation is greater than [mm] 1000,0

Warning when maximal rotatien is greater than [rmrad] 100,0

Coefficient for reinforcement 1

MNonlinearity

Geometrical nenlinearity 2nd order (Timoshe -
Methed of calculation Picard

Mumber of increments 1 |
Maximum iterations 50 |
e |
Solver robustness ratio 1

Initial stress |

- |
Stability vl |

A solver precision ratio greater than 1 yields more accurate results by applying more severe convergence conditions in the nonlinear |
analysis.

FICLE co | |

The diagram is illustrated on the following figure.

FA

L
u

The choice of the Timoshenko Method and the maximal amount of iterations can be specified through
Calculation, Mesh > Solver Setup.
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MName SolverSetupl Ll

Specify load cases for linear calculation
Specify combinations for nonlinear calculation

Advanced solver settings

General
Meglect shear force deformation ( Ay, Az »> A)
Type of solver Direct - |
Mumber of sections on average member 10
Warning when maximal translation is greater than [mm] 1000,0
100,0

Warning when maximal rotation is greater than [mrad]
1

Coefficient for reinforcement

Nonlineari
2nd order (Timoshe -

Geometrical nonlinearity

Method of calculation Picard

1 |
50
1

1

Mumber of increments
Maximum iterations

Solver precision ratio

Solver rebustness ratio

Initial stress
Stahility Y

1st order - Solution without geometric nonlinearity.
2nd order - Exact solution of differential equations, suitable for most cases of nonlinear behaviour of buildings (DEFAULT).

3rd order - Iterative solution suitable mostly for models with membranes and cables.

Example: Timoshenko.esa

In this benchmark example, a frame is calculated both in 15t and 2" Order using the Timoshenko
method. The influence of the 2" Order effects is seen to be significant.

The results are compared with the results from reference [7] ‘Stahl im Hochbau’ p256.

Stahl im Hochbau SCIA Engineer
M21 602.2 (227.1) kNm 605.97 (227.08 ) kNm
M32 506.0 (224.9 ) kNm 503.38 (224.86 ) KNm
M34 779.9 (343.0) kNm 771.54 (342.92) kNm

The results between brackets are those for the first order analysis.

The Moment-diagram for the 15t Order analysis shows the following:
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A significant increase of the moments is seen for the 2"? Order analysis:

—-503,38

60

3.4.2. Newton-Raphson

The second method is the so called Newton-Raphson method (Th.IIl.O) which is based on the
Newton-Raphson method for the solution of non-linear equations.

This method is a more general applicable method which is very solid for most types of problems. It can
be used for very large deformations and rotations; however, as specified the limitation of small strains
is still applicable.

Mathematically, the method is based on a step-by-step augmentation of the load. This incremental
method is illustrated on the following diagram:
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Choose AF
U =0
Fo =0

F=Fo+AF

A

A

Determine Kt at Fy

A

Solve K1. Au=F Up=u
Determine Fqy

! 5

U=uUg+Au

No

Convergence
inu?

The following figure shows this process graphically.

FA

>
u

_ul deltau

In this figure, the tangential stiffness Kt is used. The symbol u depicts the displacements and F is the

force matrix.
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The original Newton-Raphson method changes the tangential stiffness in each iteration. There are also
adapted procedures which keep the stiffness constant in certain zones during for example one
increment. SCIA Engineer uses the original method.

As a limitation, the rotation achieved in one increment should not exceed 5°.

The accuracy of the method can be increased through refinement of the finite element mesh and by
increasing the number of increments. By default, when the Newton-Raphson method is used, the
number of 1D elements is set to 4 and the Number of increments is set to 5.

In some cases, a high number of increments may even solve problems that tend to a singular solution
which is typical for the analysis of post-critical states. However, in most cases, such a state is
characterized by extreme deformations, which is not interesting for design purposes.

The choice of the Newton-Raphson Method, the amount of increments and the maximal amount of
iterations can be specified through Calculation, Mesh > Solver Setup.

MName SolverSetupl ~

Advanced solver settings i

General

Neglect shear force deformation (Ay, Az = > A) v

Type of solver Direct -
Mumnber of sections on average member 10

Warning when maximal translation is greater than [mm] 1000,0

Warning when maximal rotatien is greater than [mrad)] 100,0

Coefficient for reinforcement 1

Nonlinearity

Geometrical nenlinearity 3rd order (large deformation) -
Method of calculation Mewton-Raphson - i
Mumber of increments 5

Maxirmurmn iterations 50 |

Solver precision ratio 1
Solver rebustness ratio 1
Imitial stress

Initial stress

Stability

Type of eigen value solver Subspace iteration -
Murmber of critical values 4

Soil

L

EE

As specified, the Newton-Raphson method can be applied in nearly all cases. It may, however fail in
the vicinity of inflexion points of the loading diagram. To avoid this, a specific method has been
implemented in SCIA Engineer: the Modified Newton-Raphson method.

This method follows the same principles as the default method but will automatically refine the number
of increments when a critical point is reached. This method is used for the Non-Linear Stability
calculation and will be looked upon in Chapter 6.

In general, for a primary calculation the Timoshenko method is used since it provides a quicker solution
than Newton-Raphson due to the fact Timoshenko does not use increments. When Timoshenko does
not provide a solution, Newton-Raphson can be applied.

Example: N_R_Beam.esa

This project is used to illustrate the capability of the Newton-Raphson method regarding large
deformations and large rotations.
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The structure consists of a cantilever beam which is loaded by a moment at the free end. The rotation
at the free end is given by:

_M-L

P=E

When ¢ = 27, the beam will form a complete circle. The moment required for this rotation is:

2n-E-1
2m = T
The member considered has a length of 10m and a cross-section type IPE200. The parameters in this
case are:

E = 210000 N/mm?2
L = 10000 mm
1=1.943 10" mm#*

This leads to a moment M2;=2563,73 kNm.

Since the rotation in one increment is limited to 5°, about 80 increments are needed. To obtain precise
results, a dense mesh is required.

A calculation using Newton-Raphson with 80 increments and 40 mesh elements for the beam gives the
following results:

Displacement of nodes
Monlinear calculation, Extreme : Global

Selection : Al

Monlinear combinations : NC1

Node Case L Ly Uz Fix Fy Fz
[mm] [mm] [mm] [mrad] [mrad] [mrad]

N2 NC1 -9999 4 0,0 0,4 0.0 6283,5 0,0

N1 NC1 0,0 0,0 0,0 0,0 0,0 0,0

3 MC1 -3000,0 00| -3183,9 0.0 3141.6 0.0

The displacement of nodes shows the following for fiy:

1 -

6283,

Example: N_R_Membrane.esa
This project illustrates the (positive) influence of the membrane forces on the results.

A steel plate is loaded by a surface load, perpendicular to the member system-plane. A 15t Order
calculation gives the following deformations:
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Uy [mm]

247
75.0
0.0
65.0
50.0
55.0
S0.0

45.0
35.0
30.0
25.0

20.0
15.0
10.0
5.0
0.0

A 3 Order calculation using Newton-Raphson will take into account the development of membrane
forces in the plate. These tensile membrane forces will have a positive effect on the stiffness on the
plate and will thus reduce the deformations.

The results are showed below.

167
15.0
14.0
13.0
12.0
11.0

Remark
As explained before, Timoshenko is not valid for high deformations. So for this example, Timoshenko

would lead to incorrect results and this method does not take into account (positive) influence of the
membrane forces on the results. The deformations calculated with Timoshenko are the following:
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Uy [mm]
93.2

84.0
78.0
72.0
66.0
60.0

54.0
48.0
42.0
36.0
30.0

24.0

18.0

12.0
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When the stresses are dependent on the strains in a non linear way, the non linearity is called a
physical non linearity.

In SCIA Engineer, the following types of physical non linearities have been implemented:
- Plastic Hinges for Steel Structures
- Physical Non-Linear analysis for Concrete Structures

- General Plastic analysis for 2D elements

4.1 Plastic Hinges for Steel Structures

When a normal linear calculation is performed and limit stress is achieved in any part of the structure,
the dimension of critical elements must be increased. If however, plastic hinges are taken into account,
the achievement of limit stress causes the formation of plastic hinges at appropriate joints and the
calculation can continue with another iteration step. The stress is redistributed to other parts of the
structure and better utilization of overall load bearing capacity of the structure is obtained.

The material behaves linear elastic until the plastic limit is reached after which it behaves fully plastic.
The o-¢ diagram thus has the same shape as the Moment-Curvature diagram:

A

M

Mp

=

The full plastic moment is given as My, the curvature as k.

In SCIA Engineer, a plastic moment can only occur in a mesh-node. This implies that the mesh needs
to be refined if a plastic hinge is expected to occur at another location than the member ends.

The reduction of the plastic moment has been implemented according to the following codes: EC3, DIN
18800 and NEN 6770.

There is off course a risk when taking plastic hinges into account. If a hinge is added to the structure,
the statically indeterminateness is reduced. If other hinges are added, it may happen that the structure
becomes a mechanism. This would lead to a collapse of the structure and the calculation is stopped.

On the other hand, plastic hinges can be used to calculate the plastic reliability margin of the structure.
The applied load can be increased little by little (e.g. by increasing the load case coefficients in a
combination) until the structure collapses. This approach can be used to determine the maximum load
multiple that the structure can sustain.
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To take into account Plastic hinges for Steel Structures, the functionality Steel > Plastic Hinge

analysis must be activated.

The choice of code which needs to be applied can be specified through Calculation,

Setup.

Basic data | Functionality | Adtions  Unit Set  Protection

Property modifiers
Parametric input
Climatic loads
Mobile loads
Dynamics

Stability

MNeonlinearity

Structural model
IFC properties
Prestressing
Bridge design
Excel checks

Support nonlinearity/basic soil... 6

Initial imperfections

Geometrical nonlinearity i
General plasticity
Cables

Friction support/Seil spring
Sequential analysis
Subsoil

Pile Design [MEN method]
Pad foundation check
Steel

Plastic hinge analysis

Fire resistance checks

Steel connections

Scaffolding

7DoF 2nd order analysis for LTE

Girders with sinuscidal webs

Mesh > Solver

B Solver setup

Advanced solver settings
General
Meglect shear force deformation ( Ay, Az => A)
Type of solver
Mumber of sections on average member
Warning when maximal translation is greater than [mm]
Warning when maximal rotation is greater than [mrad]
Coefficient for reinforcement
MNonlinearity

Geometrical nonlinearity

Direct

1000,0
100,0

2nd order (Timoshenko)

Methed of calculation Picard
Mumber of increments 1
Maximum iterations 50
Solver precision ratio 1
Solver robustness ratio 1
EC
Initial stress Mo code
Initial stress DIN
Stability MNEN
Type of eigen value solver Lanczos
Mumber of critical values 2
Soil

= & ' Cancel
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Example: Plastic_Hinges.esa

In this project, a continuous beam is considered. The beam has a cross-section type IPE 300 and is
fabricated in S235.

According to Eurocode 3, the plastic moment around the y-axis is given by:
WoLy'f.
M — Yplyly
pLyd YMo
For the beam considered this gives the following:
fy = 235 N/mm?2
Whpiy= 6.28 105> mm3

ymo = 1.1
= Mpiy,d = 134.2 KNm

A linear analysis shows the following Moment-diagram:

—178.39

IR I I B I B e

A non-linear analysis taking into account plastic hinges gives the following result:

—13%4.24

| PARS
S s L

119.10

When the load is increased further, another plastic hinge will form in the middle of a span thus creating
a mechanism and showing the next window after calculation:

The required accuracy during iterations has not been
! achieved! The results are probably unusable.

In case that increase of the "Maximum Mumber of lterations’
still leads to no results, the structure probably cannot bear
the current loading applied, or the iteration does not
converge,

Ok
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4.2 Physical Non-Linear analysis for Concrete Structures

This topic is regarded in detail in the course “Advanced Training Concrete”.

4.3 General Plastic analysis

A general plastic analysis can be carried out for any 2D members (plates, walls and shells). The Von
Mises yield condition is currently available, which is suitable for ductile materials in general, such as
metals (steel, alumium, ...). It is a symmetric behaviour acting in the same way in tension and
compression, with or without hardening in the plastic branch.

The plastic behaviour of materials may be combined with other types of non-linearities in SCIA
Engineer.

Note: Plasticity is not supported yet for 1D members. The 1D members that are present in the model
will be considered as elastic.

4.3.1 von Mises yield criterion

In SCIA Engineer, the von Mises yield criterion is implemented.

This criterion suggests that the yielding of materials begins when the second deviatoric stress

invariant J2 reaches a critical value. For this reason, it is sometimes called the J2-plasticity or J2 flow
theory. It is part of aplasticity theory that applies best to ductile materials, such as metals. Prior to yield,
material response is assumed to be elastic.

In materials science and engineering the von Mises yield criterion can be also formulated in terms of the
von Mises stress or equivalent tensile stress, “£, a scalar stress value that can be computed from the
Cauchy stress tensor. In this case, a material is said to start yielding when its von Mises stress reaches
a critical value known as the yield strength, “¥ . The von Mises stress is used to predict yielding of
materials under any loading condition from results of simple uniaxial tensile tests. The von Mises stress
satisfies the property that two stress states with equal distortion energy have equal von Mises stress.

Because the von Mises yield criterion is independent of the first stress invariant, 11, it is applicable for
the analysis of plastic deformation for ductile materials such as metals, as the onset of yield for these
materials does not depend on the hydrostatic component of the stress tensor.

4.3.2 Finite element model

Drilling rotations at each node is used for in-plane loading. This means that element has six degrees of
freedom at each node and is therefore compatible with other types of elements (beam/solid elements).

Within the element area the Gauss 2x2 quadrature points are used. Each of these Gauss quadrature
points is realized by nine Gauss-Lobatto quadrature points throughout the thickness, so the four-node
element has 2x2x9=36 quadrature points in total.
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(a) (b) (c)
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Due to these Gauss-Lobatto points the element can handle bending loading with high accuracy. In all
of these points the nonlinear model is computed independently using the plane stress formulation.
Linear transversal shear stiffness is assumed.

4.3.1 Material properties
Figure C.2 from EN 1993-1-5 is used for the material behaviour:

Muodel
ok ok
f1
with
yielding
plateau a}
tan'(E)
"..
£
1 tan(E/10000)
(o similarly small value)
ok A 1
f1 tan” (E/100) 1
with
strain- C)
hardening p
tan”(E) R
(=
1 true stress-strain curve
2 stress-strain curve from fesis

a) elastic-plastic without strain hardening

b) elastic-plastic with a nominal plateau slope
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c) elastic-plastic with linear strain hardening

d) true stress-strain curve modified from the test results as follows:

c,.=0(l+&)

e =(l+é¢)

true

In SCIA Engineer, a), b) and ¢) are implemented.

4.3.4 General plasticity in SCIA Engineer

General plasticity is a specific type of non-linearity in SCIA Engineer. This means that General

plasticity is a sub-functionality of the non-linear analysis.

Basic data | Fundtionality | Actions Unit Set  Protection

Property modifiers Nonlineanty &
Parametric input Beam local nonlinearity
Climatic loads Support nonlinearity/basic soil..
Maobile loads Inttial imperfections
Dynamics Geometrical nonlinearity
Stability
Meonlinearity [ Cables
Structural model | Friction support/Soil spring
IFC properties Sequential analysis
Prestressing Subsoil
Bridge design Pile Design [MEMN method]
Excel checks Pad foundation check
Steel
Plastic hinge analysis
Fire resistance checks
Steel connections
Scaffolding v
Cancel

The non-linearity of materials is defined directly in the material library. See the property group Material
behaviour for non-linear analysis.
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Ais £ 56 EE S wEHE o RV}
5235 ~ | Name 5235
5275 Code independent
5353 Material type Steel
5450 Thermal expansion [m/mK] 0,00
5275 N'E:NL Unit rmass [kg/m*3] 7850,0
zizz E:t E modulus [MPa] 2,1000e+05
5 460 N/NL Poisson coeff. 03
5 275 M/ML Independent G modulus
5355 M:IML G modulus [MPa] 8,07609e+04
S 420 M/ML Log. decrement (non-uniform d... 0,15
5 460 M/ML Colour |
5235w Thermal expansion (for fire resis... 0,00
5353W Specific heat [J/gK] £,0000e-01
3480 /QL/QLT Thermal conductivity [W/mk] 4,5000e+01
z i: : Matenal behaviour for no... ,
$355H Elastic M
§ 275 NH/NLH =
5 355 NH/MLH Ultimate strength [MPa] 360,0
5 460 NH/MLH Yield strength [MPa] 2350
5275 MH/MLH Thickness range
5 355 MH/MLH
5 420 MH/MLH v
MNew Insert Edit Close

By default, all materials in the library are set as elastic. This means, that the selected material will
behave elastically during a non-linear analysis. The plastic properties of materials are generic, code

independent in SCIA Engineer and are therefore available for any material, regardless of the selected
design code.

Plasticity can be enabled by selecting a type of plastic behaviour. Currently, the only available type
is isotropic elasto-plastic von Mises. It corresponds to a bilinear stress-strain relationship, identical in
tension and compression. The plastic branch may have a slope (hardening modulus) or not.

The stress-strain relationship is automatically generated from 3 parameters: Young's modulus (elastic
part), yield stress for uniaxial tension and, optionally, hardening modulus (slope of the plastic branch).

hardening_ modulus

» stress

E modulus

with hardening

IIIIIIIIIIIIIIIIIIIIIIIWithout hardening

» strain

Only the tension part of the diagram is defined, as it is related to a plastification condition in general
3D stress state in principal stress directions. Some plastification models allow for a different yield
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stress in compression, which is defined separately. There is no limit (ultimate) strain value for the

analysis.

When the actual strain value in the structure exceeds the defined diagram, the diagram is extrapolated,
tangent to the last defined segment of the stress-strain relationship. The reason for that is, that the
analysis would then fail and it would be impossible to find where the problem is located in the structure.
It is therefore preferable, that the analysis continues and that the user checks the obtain strain values
after the analysis.

» stress

last defined segment
of plastic branch
-IIII_FIIIIII'
extrap-olated
branch
.......................... elastic branch
» strain

The following parameters define the nonlinear behaviour of the material in the material library:

e BB 9> & > mRY

S235 A | MName 5233 ~

5275 Code independent

5333 Material type Steel

3430 Thermal expansion [m/mEK] 0,00

5273 N'{NL Unit mass [kg/m*3] 7850,0

ziiz :Et E modulus [MPa] 2,1000e+05 |

5 460 M/NL Poiszon coeff. 0,3

5275 M/ML Independent G modulus

5355 M/MIL G modulus [MPa] 8,076%+04

5420 M/ML Log. decrement (non-uniform d... 0,13

$ 460 M/ML Colour I

5235W Thermal expansion (for fire resis... 0,00

2335 W Specific heat [J/gK] 6,0000e-01

S 460 /LAl Thermal conductivity [W/mEK] 4,5000e+01

5233H Matenal behaviour for no...

S275H - - -

5355 H Isotropic elasto-plastic, von Mises -

5 275 NH/NLH MNote ductile materials (metal, steel, aluminium)

5 355 NH/MLH Input type Elasto-plastic with hardening -

S 460 NH/MNLH Yield stress in uniaxial tension [... 2350

5275 MH/MLH Hardening medulus [MPa] 2,1000e+01

5 355 MH/MLH EC3

5420 MH/MLH hd ltimate strenath [MPal 360.0 e
New Insert Edit Close
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e E modulus
Young’s modulus of the material which defines the slope of the elastic part of the stress-strain
diagram

e Material behaviour
The type of material behaviour for the nonlinear analysis has to be selected

o Elastic
o Isotropic elasto-plastic, von Mises

e Input type
Defines the definition of the plastic branch of the stress-strain diagram

o Elasto-plastic: In the plastic domain, the stress remains constant when the strain
increases

o Elasto-plastic: In the plastic domain, the stress increases with the strain

e Yield strength
Elastic limit for plastification due to shear

e Hardening modulus
Slope of the plastic branch of the stress-strain diagram

Note: Various types of non-linearity may be combined in the same project. However it is not possible to
cumulate several types of nonlinearity on the same 2D member. The property FEM non-linear model
will behave as follows, when combined with a plastic material:

e Plastic material and 2D press-only behaviour: the press-only behaviour will be ignored and the
2D member will behave as plastic.

¢ Plastic material and membrane behaviour: the plastic behaviour will be ignored and the 2D
member will behave as an elastic membrane element.

When starting the analysis, a warning message will be displayed giving the same information about
functionality conflicts.

Example: Plastic_Plate_Stresses.esa

In this project, 3 vertical walls of different steel materials are loaded each time by the same vertical
surface load of 242.90 kN/m2. The value of the load is high enough to make sure that the Von Mises
stresses in every wall are higher than the allowed yield strength fy of the steel materials.

A linear analysis shows the following results for the Von Mises stresses:

\iigE+ [MPa]
426.2

400.0
350.0
300.0
2500
200.0

150.0
100.0

50.0

16

426,2 MPa

426,2 MPa
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As expected, the Von Mises stresses for every wall are exactly the same and are higher than the yield

strength fy.

For every used material, the following properties for the non-linear analysis are inserted:

W Materials it
PELIY &7 O & esd a - ¥
5235 Name 5233 n
5275 4 Code independent
5353 Material type Steel
Thermal expansion [m/mEK] 0,00
Unit mass [kg/m"3] 7850,0
E modulus [MPa] 2,1000e+05
Poisson coeff, 03
Independent G modulus O
G modulus [MPa] 8,0769e+04
Log. decrement (non-uniferm d... 0,15
Colour I
Thermal expansion (for fire resis... 0,00
Specific heat [J/gK] &,0000e-01

Thermal conductivity [W/mkK] 4,5000e+01

“ Matenal behaviour for no...

Material behaviour Isotropic elasto-plastic, von Mises -
Mote ductile materials (metal, steel, aluminium)
Input type Elasto-plastic -
Yield stress in uniaxial tension [.. 233,0
SRS
Ultimate strength [MPa] 360,0
Yield strenath [MPal 2350 hd

| New " Insert || Edit ” Delete |

Close

The non-linear analysis shows the following results for the Von Mises stresses:

sigE+ [MPa]
3531

3200
2800
2400
200.0
160.0
1200

80.0

40.0

16
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Example: Beam_Column_Connection.esa

The functionality General Plasticity can also be used to model steel connections using finite elements
to perform a plastic stress check.

In this example, a bolted column-beam connection is modelled using 2D finite elements in SCIA
Engineer. That way the plastic stresses can be calculated by performing a non-linear analysis.

Elastic results:

|iigE+ [MPa]
S506.4

Plastic results:
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\iigE+ [MPa]
235.0

2100

180.0

150.0

1200

90.0
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Local Non-Linearity

The local non linearities can be defined for 1D members, connections between 1D members, 2D
members and supports.

The following types have been implemented in SCIA Engineer:
- Beam local nonlinearity
- Beam local nonlinearity including initial Stress
- Non-linear member connections
- Support nonlinearity
- Pressure only elements

- 2D Membrane Elements

5.1. Beam Local Nonlinearity — also available in the concept edition

The options described in this chapter are also possible with a Concept edition. So the Professional
edition is not required for this chapter.

To input local nonlinearities for 1D members, the functionality Nonlinearity > Beam local nonlinearity
must be activated.

Project data et
Basic data | Functionality | Loads Combinations Unit Set Protection
Property medifiers O 4 |I'I(:|nlim:m'il]r | ~
Parametric input O |Beam lecal nenlinearity "
Climatic loads O Support nonlinearity/basic soil., [ i
Meobile loads O Initial imperfections O
Dynamics O Geometrical nonlinearity
Stabili [ General plasticity O
Compression-only 20 members [
Structural model U Cables O
IFC properties | Friction support/Soil spring O
Prestressing O Membrane elements O
Excel checks O Sequential analysis O
Document O 4 Subsoil
Soil interaction O
4 Steel
Plastic hinge analysis O
Fire resistance checks O
Steel connections O v
| OK | | Cancel

The non-linearity can then be inputted in the 1 Stucturs menu through 2= Beam - nonlinearity
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B Beam nonlinearity X
. H
a] H b) Marmne 53
u, u Press onli v
Lirnit force
Gap
W i Initial stress
’ | / K
H
e) ! f)
Hy HeT
/ - " "
g} ® h] # a) Tension-only 10 members
b} Press-only 10 members
o / | | &) Limit compression force combined with loss of stability
7 - 3 o o, d} Limit compression force combined with plastic behavior
' €] Limit tension force combined with less of stability
f) Limit tensien force combined with plastic behavior
" g} Gap - no tension - modelling e.g. the instant when a 10 member
|] bears against a suppert
/ h} Gap - no compression - modelling e.g. a free rope
.o i) Gap - free in both directions - e.g. a scaffold pipe
g
U
/

The following types are available:
- Pressure only
- Tension only
- Limit force
- Gap element

- Initial stress

All those options are explained with examples in the chapters below.

5.1.1 Members defined as Pressure only / Tension only

Pressure only: the member is only active under pressure (i.e. strut, ...)
Tension only: the member is only active under tension (i.e. anchor, diagonal, ...)
When using this type of beam non-linearity, it can happen that numerically a very small

pressure/tensile force remains in the member, mostly due to the self-weight. This value will always be
negligible compared to the other force components in the member.

Example: Tension_Only.esa

A 39 Order calculation is executed using Newton Raphson, including global imperfections.
The diagonals are designated as ‘Tension-only’ members.

The normal forces for a linear analysis show that extreme compression results are obtained in the
diagonals. This will inevitably lead to failure due to buckling.
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the FEM type of the member can be set to

Advanced Professional Training — Non Linear and Stability

The normal forces for the non-linear analysis shows that diagonals are now only subjected to tension

thus buckling will not occur anymore. Only very small compression forces will appear in the diagonals.

Notes:

- It is important to keep in mind that ‘Tension only’ does not change anything for shear forces and moments.

The only component which cannot occur is compression, but the member can still be subjected to bending,

torsion,...

To specify that a member can only be subjected to normal forces

axial force only.
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Properties - O X

Member (1) AT : YA
& x

Mame B210 M

Type general (0] =

Analysis model Standard -

Cross-section C514 - L1010 L

Alpha [deg] -43,00

Member system-line at Centre -

gy [mm] 0

ez [mm] 0

LCS standard -

LCS Rotation [deq] 0,00

Layer standard

System lengths and buck... Default -

Material and no. of parts ~ Steel, other - 1
Secondary member

Geometry v

When using this, the user must be absolutely sure that bending effects cannot occur in reality!

-The Calculation protocol for the Nonlinear calculation shows extra information concerning the applied
nonlinearities, number of iterations per combination, ...

Calculation protocol
Nonlinear calculation

Number of equations 13518
Maximum iterations 30
Mumber of increments 5
Type of nonlinearity II. order

local nonlinearities
Method (I1. order) Newton-Raphson
No. of combination Start End No. of iterations
MNC1 16.08.201808:25 [16.08.201808:25 (5
NC2 16.08.201808:25 [16.08.201808:25 (4
NC3 16.08.201808:25 [16.08.201808:25 (4
MNC4 16.08.201808:25 |16.08.201808:25 [5

Example: Mechanism.esa

When using Beam Nonlinearities, it is important to make sure that not too many elements are
eliminated.

A common error is the creation of a mechanism due to the fact too many elements have been
designated tension only/pressure only and thus no solution can be found. This principle is illustrated in
the following project.

A steel frame has been modelled with hinged connections between the elements. The diagonals have
been specified as Tension only.
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v v v b

}7 _

Due to for example a roof load, both diagonals are subjected to compression. This is not possible for
Tension only members so both members are eliminated causing a global instability of the frame.

5.1.2 Members with Limit Force

A member with limit force acts in the structure until a specified limit is reached after which the member
will be eliminated from the calculation or yields plastically.

Properties - I X
Beamn nonlinearity (1) AR

&
Mame | 51
Type Limit force -
Direction Limit compression -
Type Buckling ( results zero ] -
Marginal force [kM] -30,00
Member Bl

The Direction is used to specify in which zone the limit acts: the tension zone or the compression
zone.

When the limit is reached, it can be specified in the Type field how the member should act. The
member can be eliminated from the structure (Buckling) or the member can stay in the structure but
with the limit force as maximal axial force (Plastic yielding).

The limit itself is defined in the field Marginal Force. A negative value must be specified for a
compression limit and a positive value for a tension limit.
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Example: Limit_Force.esa

In this project, a frame is modelled in which one diagonal has a compression limit of -30 kN.

For the left frame, the type is set to Buckling, for the right frame the type is set to Plastic yielding.

A linear analysis shows the following normal forces in the diagonals of both frames:

/</j /éj
% | %
5 % s
X

A non-linear analysis, taking into account the limit force gives the following results for the normal
forces:

Q‘QQ

Pe:

Z

[#)

O, Y 2
Z < >
&)
N
X

In the left frame, the diagonal has buckled so the tensile force in the remaining diagonal is augmented.
In the right frame, the diagonal stays in the structure but yields plastically and thus acts at the limit

force of -30 kN.

The deformed structure for the non-linear analysis shows the following:
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¢!

Due to the fact one diagonal has buckled in the left frame, larger horizontal deformations occur.

5.1.3 Members with gaps

There are various connection and support conditions used in a real structure. It may happen that a
beam is not attached rigidly to the structure but "starts its action" only after some initial change of its
length. The beam thus has to have a certain translation in its local x-direction before it becomes active.
This behaviour can be inputted using ‘gap’ elements.

— _— _— ———— S —— U ——

a] i, b) ¥4 MName 53
1 u | | Type Press only -
Displacement [mm] 10,0
Position Begin -
HA Hi
c} w / d:l
|
+ H |
e) ) f) :
N‘ﬂ T |
/ J h
|
g] " h] # a) Tension-only 1D members
b} Press-only 10 members
/ | | € Limit compression force combined with loss of stability
v " . = u, d) Limit compression force combined with plastic behavior
) €} Limit tension force combined with loss of stability
f) Lirnit tension force combined with plastic behavior
. g} Gap - no tension - modelling e.g. the instant when a 1D member
|} bears against a support
/ h) Gap - no compression - modelling e.g. a free rope
.o i) Gap - free in both directions - e.g. a scaffold pipe
T
v,
The Type field is used to specify if the member is active only in compression, only in tension or in both

directions.

The value of the translation can be inputted in the Displacement field. The gap can be defined at the
beginning or at the end of the beam using the Position field.

Gap members in tension only can for example be used to model a rope: the rope can only work in

tension but becomes active only after a certain translation. Gap members in both directions are
frequently used in scaffolding structures.
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5.2. Beam Local Nonlinearity including Initial Stress

To input local nonlinearities for 1D members, including initial Stresses, following functionalities must be
activated:

Nonlinearity

Nonlinearity > Beam local nonlinearity

Nonlinearity > Geometrical nonlinearity

- Cables
Functionality Initial stress is a standard functionality of SCIA Engineer, it is hidden and always enabled
by default.
| Project data
Basic data | Fundctionality | Actions Unit 5et  Protection

Property modifiers Nonlineanty ~
Parametric input |Beam local nonlinearity % I
Climatic loads Support nonlinearity/basic soil. [ |
Mobile loads Initial imperfections
Stability General plasticity
Nonlinearity [l |Ca|::||es v I

Structural model
IFC properties
Prestressing
Bridge design
Excel checks

Document

Friction support/5oil spring
Sequential analysis
Subsoil

Pile Design [MEM method]
Pad foundation check
Steel

Plastic hinge analysis

Fire resistance checks

Steel connections
Scaffolding

Cancel

The non-linearity can then be inputted in the 1 Stucturs menu through 2= Beam - nonlinearity
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B Beam nonlinearity

1] 4

PR

b4
Mame 53
Iital stress -
o | | Mormal force [kN] Press only
Tension only
Limit force
Ga

U

Hy L

u,

a) Tension-cnly 10 members
b) Press-only 1D members
c) Limit compression force combined with loss of stability

/ u,

d) Limit compression force combined with plastic behavior
€) Limit tension force combined with loss of stability
) Limit tension force combined with plastic behavior

s
/ 1,

g) Gap - no tension - modelling e.g. the instant when a 1D member
bears against a support

h) Gap - no compression - modelling e.g. a free rope

i) Gap - free in both directions - e.g. a scaffold pipe

Cancel

Two extra types are now available:
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Cable Elements




5.2.1 Members with Initial Stress

Tensile forces in elements augment the stiffness of the structure. Compression forces reduce the
stiffness.

Initial Stress is regarded as follows:
- The element in question is taken from the structure.
- The initial Stress is put on the element through the defined axial force.

- The element is put back into the structure.

It is clear that, when the element is inserted into the structure, the initial stress will partly be given to
other members thus the inputted force will not stay entirely in the member in question.

Notes:

- A positive axial force signifies a tensile force; a negative axial force signifies a compression force.

- Initial Stress is mostly used in conjunction with a 2" Order analysis.

To take the inputted Initial Stresses into account for the calculation, the options Initial Stress and
Initial Stress as input must be activated through Calculation, Mesh > Solver Setup.

Name SolverSetupl
Advanced solver settings
General
Monlinearty
v

Initial stress

Stress from member nonlinearity data

Soil

FIEL:

Example: Initial_Stress.esa

In this project, a simple frame is modelled. The diagonal has a RD30 section and is given an Initial
Stress by means of a tensile force of 500 kN.
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[ I

In the left frame, the Initial Stress will immediately be distributed to the column. In the right frame, the
extra support will prohibit this.

A non-linear analysis, taking into account the initial stress gives the following results for the normal

forces:
{3@%
(3
s
Q’b
'Dq "
0,30
M
I S 1 -0.30

As specified, in the left frame, the initial stress is immediately distributed to the rest of the structure so
the tensile force of 500 kN is not found entirely in the diagonal. In the right frame, the force cannot be
distributed due to the support so the 500 kN stays in the diagonal.

This principle is even clearer when looking at the deformed mesh for the non-linear analysis:

/

In theory, when using correctly defined values of the cross-section properties (surface A, moment of
inertia I, modulus of Young E), a Beam non-linearity with Initial Stress can also be used to model
straight cables with large pre-stress forces. Both Timoshenko and Newton-Raphson methods can be

applied in this case.
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In general however, for cables the use of the specific Cable element is advised in conjunction with the
Newton-Raphson method.

5.2.2 Cable Elements — Not available in the Professional edition

This options needs module esas.12 and this module is included in the expert edition.

A Cable element is an element without bending stiffness (ly and Iz = 0). During the solving of the
equations this is taken into account so no bending moment will occur in the element. The
displacements (in the intermediate nodes) have thus been calculated without bending stiffness.

A Cable element allows a precise analysis of cables. For slack cables, SCIA Engineer allows the
definition of the initial curved shape of the cable.

A cable can be defined in three ways:
1) A Straight cable.
2) A Slack cable with an initial shape caused by the Self-weight.
3) A Slack cable with an initial shape caused by a distributed load Pn.

A straight cable is defined by choosing the option Straight at “Initial mesh”

H Hy 53
a] b) Mame
/ Type Cable -
‘ Mormal force [kM] 0,00

C) ‘H/ d:l 4

e) " f) '

g hy ° '

> i)
v,

When choosing Calculated for Initial mesh, the cable acts as slack.
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\ W 53
a] " b) Mame
/ Type Cable -
v, w | | Initial mesh Calculated -
‘ Mormal force [kM] 10,00
W Hag N,
C) H d:l Pn [kM/m] 0,00
Alpha x [deg] 0,00
|
i H |
e) ! f:l
N‘/l T I
/ J |
1
| ¥ H
g h) .
-0y D/
/ U U
. H
i)
-0
u,
| Cancel |

The initial shape will be in equilibrium in relation to the specified load on the cable: either the Self-
weight or a distributed load Pn.

When activating the option Self weight the specified load will be the self weight of the cable.

When choosing for a distributed load Pn, it can be specified that the load is not vertical but is rotated.
This can be inputted through the angle Alpha x, the rotation angle around the local x-axis. For a
default slack cable this parameter will be zero.

When using a calculated initial mesh, the program generates a curves mesh, defining an arc of circle
based on the two ends of the member and the sag in the middle of the member.
The sag is calculated as follows:

ol M
y v v v v Y ¥ ¥ ¥V v Y
f } e
\‘l—r /
_q L
f_8-N

tension in the cable (positive value)

offset of cable at mid-span

span length

line load on the cable (positive = downwards) applied perpendicularly to the axis
of the member.

q can be equal to B, or SW or B, + SW

Q o~ =
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The user can thus define a specific initial shape by specifying the value for the sag f. Using the above
formula, this leaves two unknowns: Pn and N. By choosing the value for one, the other is defined and
the initial shape is known.

- the distributed load q is always perpendicularly to the member axis. The reason for that is, that
only the component of the load that is acting perpendicularly to the beam is affecting the
calculation of the sag. However, this implies that the value of sag will be overestimated when the
member is not horizontal.

Workaround: disable the self weight and input it as P, instead, with B, = SW - cos€ where 8 is the
angle between the member axis and the horizontal plane.

- Thereis a limit value for the sag value. The program will not apply a sag value larger then L/4. If
the result of the formula above is higher, f = L/4 will be used.

- The input of the cable element only defines the initial shape. Afterwards the cable can be
loaded by real loads.

- The calculations are executed on the deformed shape. This indicates that the eventual
deformation of a cable is calculated from the slack shape and not from the initial straight
shape.

- The deformed mesh can be used to show the true deformation of the cable.

- For a precise analysis, the finite element mesh on a cable element needs to be refined. To
avoid unnecessary refinements for all members of the structure, the mesh of cable
elements can be refined separately through Setup > Mesh > Average size of cables,
tendons, elements on subsaoil.

MName MeshSetupl
Average number of tiles of 1d element 10 {
Average size of 2d element/curved element [m] 1,000
Advanced mesh settings
General mesh settings
1D elements
Minimal length of beam element [m] 0,100
Maximal length of beam element [m] 1000,000
1,000
Generation of nodes in connections of beam elements o |
Generation of nodes under concentrated loads on beam elements o4 |
Generation of eccentric elements on members with variable height [
Division on haunches and arbitrary members 5
Division for 2D-1D upgrade 50 |
Mesh refinement following the beam type MNone -
|
Average size of cables, tendons, elements on subsail, nonlinear soil spring
| = = Cancel

Example: Cable_Equilibrium.esa

In this project, a cable analysis is performed once with a pre-stress force and once without. The cable
has following properties:
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Length of the cable: 20m

Section of the cable: 0.001 m2
E-module of the material: 2.1 1011 N/m2
Loading q on the cable: 1 kKN/m

Result of SCIA Engineer for initial pre-stress Ninit=1000 kN
Wmax = 49.8 mm

N = 1003.50 kN
Check:
- Moment ig the middle of the cable:
q'8L — N Wy = 50 — 49.97 ~ 0

- Normal force in the cable:

For the calculation of the strain, the shape of the displacement is taken as parabolic. This gives the
following formula:

* 16
s = /bz — = h?
3
The strain ¢ in the cable can then be written as:
S b
16 - h? 16 - W,Znax
e= |1+ —-1= [1+———-1=1.653346-10"">
352 32
J N;=¢-A-E =3472kN
—h N = Ninit+ Nd = 1000 kN + 3.472 kN = 1003.47 kN = 1003.55 kN

Result of SCIA Engineer for initial pre-stress Ninit= 0 kKN

Wmax = 329.8 mm

N =152.02 kN
Check:
- Moment in the middle of the cable:
L — N Wynax = 50 = 50.09 ~ 0

- Normal force in the cable:

.h2 -
£ = /1+136_s’§ —1= /1+16:$—1=7.24418-10—4

Ny=¢e-A-E=15213 kN

N = Nda =152.13 = 152.01 kN

The deformation of both cables is shown in the following figure:
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-329.8
The following results are obtained for the normal forces in the cables:

1003,50

152,02
I

Example: Cable_Polygonal.esa

In this benchmark project a polygonal cable is loaded by a Point Load. The value of the Point Load is
altered between 3 kN, 5 kN, 10 kN, 15 kN and 20 kN.

For each case, the maximal deformation and the normal force are compared with benchmark results
from Petersen, ref [9].

The following graphs give an overview of the obtained results out of SCIA Engineer:
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N [kN]
50.00
45.00 #-45.07
40.00 ’//'
35.00
30.00
25.00
20.00
15.00

10.00
5.00

NC1 NC2 NC3 NC4 NC5

Uz [mm)]

MC1 MC2 MC3 MC4 MCS

-100

\st
\ 135,13

-120

-140

The following table gives an overview of the obtained results in comparison with Peterson:

F 3.0 kN 5.0 kN 10.0 KN 15.0 KN 20.0 kN
N Petersen [KN] 7.48 12.29 23.80 34.69 45.08
N SCIA Engineer [KN] [ 7.48 12.29 23.79 34.68 45.07
Af Petersen [m] 0.0233 0.0392 0.0744 0.1072 0.1375
Af SCIA Engineer [m] | 0.0236 0.0385 0.0731 0.1054 0.1351

Example: Cable_Distributed.esa

In this benchmark project a pre-stressed cable is loaded by a Distributed Load. The value of the
distributed load is altered between 1.7 N/m and 6.33 N/m.

For both cases, the maximal deformation and the normal force are compared with benchmark results
from Petersen, ref [9].

The pre-stress force in the cable is 3,8 kN.
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The following table gives an overview of the obtained results:

N Petersen [kN]

3.83

4.23
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N SCIA Engineer [KN] | 3.84 4.24
Af Petersen [m] 0.15000 0.50615
Af SCIA Engineer [m] | 0.14967 0.50467

Example: Cable_InitialShape.esa

To illustrate the calculation of the initial shape, a simple cable element is modelled with following
properties:

Length of the cable: 20m
Section of the cable: 0.001 m2
E-module of the material: 2.1 x 10! N/mz2

I/:IB s
& T P

The initial shape will be calculated with following properties:

Normal force: 200 kN
Distributed load: 10 kN/m
Properties - 0 X
Beam nonlinearity (1) - B Y
&
MName | 52
Type Mene -
Initial mesh Calculated -
Mormal force [kN] 200,00
Self weight no
Pn [kMN/m] 10,00
Alpha x [deg] 0,00
Member B2

Afterwards the cable is loaded by a line force of 1kN/m.
SCIA Engineer gives the following results for the displacement in the z-direction:

28.9 28.9
\ |

\ L \

Those are the displacements of the distributed load of 1kN/m.

This initial shape can also be calculated with following formula:

.12
H=q
8-f
q-L* 10kN - (20 m)?
f= = = 2.5m = 2500mm

" 8-H  8-200kN

The total deformation in the middle of the cable is than:
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TS0 ©te T
CUNNLEIw 2000 g0 ldanN
— — 00w — —

15.2

Total deformation = -2500mm + 8.0 mm = -2492 mm:

Properties - 0
Deformed structure (1) AT
&

MName Deformed structure
Selection All
Type of loads Menlinear combinations }__!\_‘ ‘ h T' )
MNenlinear combinations MNC1 VoL [ [ ‘_ _.I ] [ | [ ] Y [ e
Filter Mo —-2492.0
Structure Global defermation

Uz/uz
System Principal
Extreme Member
Drawing setup 20
Section All

Example: Guyed_Mast.esa

To illustrate the application of cables, a guyed mast is modelled. The mast is supported by several
cables which have a pre-stress force of 5 kN and an initial shape due to the self-weight.

The deformed mesh for Non-Linear combination NC9 for example shows the following:
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Detailed calculation information can be found in the Calculation Protocol:

Calculation protocol
Linear calculation

Loadcases LC1
LC2

LC3
LC4
LCS
Start of calculation 16.08.201808:58
End of calculation 16.08.201808:58

Sum of loads and reactions.

Loadcase LC1  |loads 0.0 |-1.7
reactions in nodes 0.0 1.7
reactions on lines 0.0 0.0
contactlD 0.0 0.0
contact2D 0.0 0.0

Loadcase LC2  |loads 4.6 0.0
reactions in nodes 4.6 [0.0
reactions on lines 0.0 0.0
cantactlD 0.0 0.0
contact2D 0.0

Loadcase LC3  |loads -6.0
reactions in nodes 6.0
reactions on lines
contactlD
contact2D

Loadcase LC4  |loads

reactions in nodes
reactions on lines
contactlD
contact2D
Loadcase LCS  |[loads

reactions in nodes
reactions on lines
contactlD
contact2D

(| o) o | o Lo ] o Lo ) o) P | (o Lo ] G P ) o Y e o ) Lo ] o ) P ) o} P o s ) s ) s
e ) fou] [} [ o] o | fon ] ] [ [ o] o [ | i ) o ) oo | o [ [ (] [ [ ) fo o ] [}
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5.3. Non-Linear Member Connections

When inputting hinges on beam elements, it is possible to input a non-linear function for each degree
of freedom (ux, uy, uz, fix, fiy, fiz). The function can signify the relation between moment and rotation
or force and displacement.

T(pz Pasition Begin - I
ux Rigid - |

uy Rigid -

uz Rigid -

fixx Rigid -

fiy MNenlinear -

Stiff - fiy [kNm/mrad] 3,9149e+01

Fun - fiy MNode : N2-[B3] LI
fiz Rigid -
|
L] |

When using non-linear functions, it is very important to input a relevant linear stiffness. This value is
used during the first iteration of the non-linear calculation (and during a linear calculation).

The non-linear functions can be defined through B Loy 5 8 Structure, Analysis >
#= Monlinear functions
| :'-'e.=”".':'..":- l |

Aiaemi 9 & - 4~ mRy

Node: N2-[B3]

Type Rotation M [kNm]

Positiveend  Free -

Negative end Free -
Impulse
1 [rmrad, kM
2 [mrad, kM
3 [mrad, kM
4 [mrad, kN
5 [mrad, kM
G [mrad, kM
7 [mrad, kM

23.3120

1T

1. T318
—o.noon

fi [mrad]

T.TI0T
13,3120

IBEERS

-
2

Create new function New Insert Edit Close
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For member connections, the non-linear functions can be defined for translation or rotation. When
defining a function, it is very important to check the signs of the function values. The defining
maghnitudes for non-linear rotation functions are the internal forces, for non-linear translation functions

the displacements.
This implies that these functions are inputted in the first and third quadrant.

For the end of the function, it is possible to select one of three options:

- Free: When the maximal force is reached, it stays at that value and the deformation will rise
uncontrolled.

- Fixed: When the maximal deformation is reached, it stays at that value and the force component
will rise.

- Flexible: The relation between force component and deformation is linear.

SCIA Engineer also allows creating a new function from the already defined functions to provide an
easy input of complex functions.

Example: Connection.esa

In this example, an industrial hall is calculated using algorithms to calculate the moment-rotation
diagram for bolted and welded beam-to-column connections. SCIA Engineer allows the calculation of
these diagrams and the automatic application of the diagram as a non-linear spring function for
member connections. For the theoretical background, reference is made to the “Advanced Training
Steel” and ref. [14].

The geometry of the structure is shown in the following figure:

The structure is calculated in 2" Order using Timoshenko’s Method. The diagonals have been set as
Tension-only.

In node N2 a bolted beam-to-column connection is modelled:
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7
E_j N7 B[l + I var (IPE4D0,370)] |

Eh
/—{ __1 [|PEE@§1

The Moment-Rotation diagram is calculated by SCIA Engineer using the algorithm of the EN 1993-1-8.

kNm
250.0000
200.0000
150.0000 /
100.0000

50.0000 /
0.0000
= = = = = g g g 2 mrad

Together with the calculated diagram, automatically a non-linear function is created:

B Monlinear functions *
AiremBE 2> & =zE A MY
Mode: N2-[B3]
Mame Mode: MN2-...
Type Rotation
Positiveend  Free -
MNegative end  Free -
“ Impulse
1 [mrad, kM
2 d, kN
trre fi [mrad]
3 [mrad, kM
4 [mrad, kM
5 [mrad, kM
& [mrad, kM

7lmradkN 23,3120/ 2..

Create new function " New " Insert " Edit " Delete | Close
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The function characterizes both tension-on-top and tension-at-bottom.

This function can then be assigned to the hinge defined in node N2:

Properties v 0 x
Hinge on beam (1) - a8y

&
Mame H37
Position Begin -
ux Rigid -
uy Rigid -
uz Rigid -
fize Rigid -
fiy Menlinear -
Stiff - fiy [kMm/rrad] 3,914%e+01
Fun - fiy MNode : M2-[B3] -
fiz Rigid -
Member B3

5.4. Support Nonlinearity

SCIA Engineer allows the following types of non-linear supports:
- Tension only / Pressure only supports
- Nonlinear springs for supports

- Friction supports

5.4.1. Tension only / Pressure only Supports

To input nonlinearities for supports, the functionality Nonlinearity > Support nonlinearity/basic soil
spring must be activated.
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[p roject data *

Basic data | Functionality | Actions Unit Set  Protection

|
Parametric input Nonlinearity ~ ‘
Climatic loads Beam local nonlinearity
Mobile loads ||Support nonlinearity/basic soil...l v n l
Dynamics Initial imperfections | l
Stability Geometrical nenlinearity I
v General plasticity l
Structural model [ Compression-only 20 members l
IFC properties Cables l
Advanced concrete checks v Friction support/Soil spring l
Bridge design Membrane elements l
Slabs with void formers Sequential analysis l
Excel checks Subsoil l
Docurnent Soil interaction l
Pile Design [NEM method]
Pad foundation check
Concrete
10 physical nonlinearity v

Supports with tension can be automatically eliminated. This is mostly used for slabs on subsoil, column
bases of for example scaffoldings, struts, ...

The following types of supports can be eliminated if tension occurs:
- Nodal Support
- Line Support
- Subsaoll

For Nodal Supports or Line Supports it is possible to specify a translation degree of freedom as ‘Rigid
pressure only’ or ‘Flexible Pressure only’.

Subsoils are always regarded as Pressure-only for a non-linear calculation, if the functionality
Support nonlinearity/Soil spring is ticked on.

B Support in node X
MName Snl
Type Standard -
Constraint Fixed -

R
Rigid
7 e Flexible
Default size [m] Rigid press enly
Geomet Rigid tension only
E},/ "\‘Ey = Flexible press only
System

Flexible tensicn cnly
Nenlinear

Cancsl
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Example: Subsoil.esa

In this example, a slab on subsoil is calculated. The slab is loaded by a Point Force in the middle.

The deformed mesh for the linear analysis shows the following:
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Especially in the corners, tensile contact stresses are expected:

sigmaz [Pa]
10862807

i

g

5000.000
8000.000
7000.000
6000.000
000.000
4000.000
3000.000
2000.000
1000.000
-BEE.1T!

I3

only characteristic of the subsoil shows the

A non-linear analysis, taking into account the pressure

following deformation
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As can be seen, the slab will rise at the corners so no more tensile contact stresses are obtained:
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The pressure stresses in the middle have increased which is expected when the slab can rise at the
corners.

Note:

2000.000 —
T000.000 +—
5000.000 +—
5000.000

4000.000 ]
3000.000

2000.000
1000.000

- When using subsoil, it is important to adequately refine the mesh in order to produce precise results.
- When calculating following the Winkler theory, the Pasternak values (C2) must be set to zero.

5.4.2 Nonlinear Springs for Supports

As seen for nonlinear member connections, it is also possible to use non-linear functions for supports.

For each degree of freedom (X, Y, Z, Rx, Ry, Rz) a nonlinear function can be inputted. The function
can signify the relation between moment and rotation or force and displacement.

- A |
Type Standard -
Angle [deg] |
Constraint Custom -
X Rigid -
Y Rigid -
z Rigid -
Rx Rigid -
Ry MNenlinear -
Stiffness Ry [MNm/rad] 1,7490e-01 |
Function Ry MLF1 LI
7 Rz Rigid -
‘ Default size [m] 0,200 |
_,/"' Geometry
# Suctem GCS - M|

When using non-linear functions, it is very important to input a relevant linear stiffness. This value is
used during the first iteration of the non-linear calculation (and during a linear calculation).

The definition of the nonlinear functions is exactly the same as seen with nonlinear member
connections.

In addition to nodal supports, a non-linear function can also be used for a subsoil under a plate.
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Example: Support_Function.esa

In this example, the use of a non-linear function for a support is illustrated. A simple beam on two
supports is modelled.

= 1000000
00000

u [mm]

1 G .y

The beam is loaded by a point force at one end. The value of the point force is taken as 1kN and
1.4kN.

A non-linear analysis shows the following deformation for the load of 1kN:

FZ,/-1.40

-~

o

—53,1 mm

This value can manually be approximated as follows:
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_ —100mm
" _1328N + 628N

(1000 N + 628 N) = —53,14mm

For the load of 1.4 kN, the fixed end of the function is reached thus the maximal deformation of 200mm
is obtained:

F2/-140

ot

=100,0 mm

Example: Pallet_Racking.esa

In this example, the calculation of a pallet racking system is shown according to ref. [10] Eurocode
ENV 1993-1-1 and ref. [11] FEM 10.0.02. This last reference gives field test methods which allow the
definition of moment-rotation diagrams for beam-to-column connections and column supports.

The beam-to-column connections and column supports can be defined by means of non-linear
functions.

/ -
/A
T — / e
— é/
g e
/ T N —
T N\ T
/ == -
/ i,
/ i ——
/ / T

/0.4 R

/ | A
Z—L}V/ {-E;. / 7

o / /
(W | J
fl | 04 /
<] / Y /
= /
(j[ - /
! (5.4
3 /%
é‘/ ras)

The following non-linear spring is defined for the column supports:
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[ Monlinear functions W
e 9> & =EH A HRY)
Function 1.
Function 2.
Name Function 1. M [] Nm]
Type Rotation 167
Positive end  Free -
MNegative end  Free -
4 Impulse
1[rad,kNm] -0,0096 / -1 z g
2 [rad,kNm]  0,0000 / 0,00 il = 1
3[rad,kNm] 10,0096/ 1,67 ’g fi [rad]
e
| Create new function " New " Insert " Edit " Delete | Close

The beam-to-column connections are defined by the following non-linear characteristic:

T Monlinear functions w
Hieml 9= 85 - A 7
Function 1.
Function 2.
Marme Function 2. M [kNm]
Type Rotation an|
Positive end  Free - ; ;; r
MNegative end Free -
4 Impulse L
1[rad kNm] -0,0493/ -3 s EEiE
2 [rad kNm] -0,0373/ -3 5 S 29 '-%: by
3 rad,kNm] -0,0241/ -2 EZ: - & fifrad]
4[rad,kNm] -0,0144/ -1 -
5 [rad kMm] -0,0037 /0,
6 [rad,kMrm] 00000 /0,00 ]
7 [rad,kNm] 0,0037 / 0,00 u
8 [rad kMm] 00744 /1,72
9 [rad,kMNm] 00241 /268
10 [rad,kMm] 00373 /3,37
11 [rad kMm] 00493 /371
Create new function u New " Inzert ” Edit ” elete ‘
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Example: Culvert.esa

This project illustrates the use of non-linear functions to model for example the soil under a culvert.
The culvert has the following shape:

Non-linear supports have been defined with appropriate functions to model the behaviour of the soil:

éx Eiiiiiiiiiﬁiiiiiiiiiﬁiﬁiﬁiﬁﬁﬁiiﬂiiiiiif

AaewBik o & =l 4 miy;

Function 3. A

Function 4.
Function 5.
Function 6.

Function 7. -

Function 7.
Type Translation 0007
Positive end  Rigid - = u [ﬂl]
Negative end  Rigid -

2 0000
000

]

i’

Impulse
1 [, MN]
2 [m,MN]
3 [m,MN]

Create new function New Insert Edit Close

A non-linear analysis gives the following deformation pattern for combination NC2:
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Friction supports can be used to model the fact that a reaction component is dependent on another

5.4.3 Friction Supports

component. The horizontal component is for example dependent on the vertical component. When the

friction force is surpassed, the support slips through resulting in large deformations.

To input friction supports, both the functionalities Nonlinearity > Support nonlinearity/Basic soil

spring and Friction support/Soil spring must be activated.

Basic data

Functionality | Actions

Unit 5et  Protection

freedom (X, Y, 2).

Property modifiers
Parametric input
Climatic loads
Meobile loads
Dynamics

Stability

Structural model

IFC properties

Advanced concrete checks
Prestressing

Bridge design

Excel checks

Document

|Nunlim:ﬂrity

Beam local nonlinearity

|Suppu:urt nonlinearity/basic soil sp...

Initial imperfections
Geometrical nonlinearity
General plasticity
Cables

|Frir:ti0r| support/Soil spring

Sequential analysis
Subsoil

Pile Design [MEM method]
Pad foundation check
Concrete

1D physical nonlinearity

When entering a nodal support, the option Friction can be chosen for the translational degrees of

Cancel
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MName Snl
Type Standard -
Angle [deg] |
Rz Constraint CL.ISt.DI’T'I -
f From reaction Z -
C flex X [kN/m] 800,00
mju X 0,2
¥ Friction -
From reaction Z -
C flex ¥ [kN/m] 800,00
mju 'Y 0,2
z Rigid -
Independent friction
Rx Free -
Ry Free -
Rz Free -
Default size [m] 0,200
Geometry
System GCS -

Cancel

The option From Reaction is used to specify which force component causes the friction force.

XY, Z:

XY, XZ,YZ:

X+Y, X+Z, Y+Z:

In these formulas,

The final limit force can be calculated from the reaction in a specified direction. If a
support in the X-direction is being defined, it can be said that the friction force
should be determined from the reaction calculated in either the Y or Z direction. The
friction force is calculated from the following formula:

mju, - R,

The final limit force can be calculated as a compound friction. Only one of the stated
options is offered for each direction. E.g. if a support in the X-direction is being
defined, it can be said that the friction force should be determined from the reactions
calculated in the Y and Z direction. The friction force is calculated from the following
formula:

mju, - R + R?
The same as above applies here. A different procedure is however used to

calculate the limit force. E.g. for a friction support in the X-direction the following
formula is employed:

mju, - R, +mju, -R,

mju specifies the coefficient of friction.

In the field C flex, the stiffness of the support can be inputted.

Note:

- Friction can be inputted in one or two directions. It is not possible to define friction in all three directions
since otherwise the "thrust™ cannot be determined.

- When simple friction (X, Y, Z) is defined in two directions, the option Independent is available. This specifies
that the friction in one direction is independent on the friction in the other direction.

- Composed friction (e.g. YZ or Y+Z) can be specified only in one direction.
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Friction supports can be used for several types of structures. Nearly every support which isn’t rigidly
connected to the surface on which it stands is subjected to friction. Examples include base jacks of
scaffolding structures, supports on an inclined surface, pipes in boreholes,...

Example: Scaffolding.esa

This project illustrates the use of friction supports for a scaffolding structure. The scaffold has the
following geometry:

The base jacks are inputted as friction supports. Since a base jack, by default, is not connected to the
surface, the Z-direction is defined as rigid Pressure-only. Both horizontal degrees of freedom X and Y
are defined as Friction, dependent on the reaction Z.
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| B Support in node %
Mame 5n21
Type Standard -
Angle [deg] ‘
Rz Constraint CL.ISt.DI"I"I -
fz From reaction z - |
C flex X [kN/m] 1000,00 f
x AL Y R mju X 0,2
Rx Yy Y Friction -
/ @\ From reaction z -
C flex ¥ [kN/m] 1000,00
7 mju Y 02
z Rigid press only -
) Independent friction
X ! Rx Free -
Ry Free M |
Rz Free -
Default size [m] 0,200 l
Geometry I
System GCS - |

Cancel

When large wind loads are taken into account, for example due to netting, large horizontal reaction
forces are expected in the base jacks. When these reactions surpass the friction force, the support
slips through.

After a non-linear analysis of the scaffold, the deformed mesh for combination NC5 shows the
following:

In the middle base jacks, the friction force is clearly surpassed and thus the supports slip through. To
avoid this, the reaction in Z-direction must be augmented thus extra dead weight like ballast will be
required or the base jacks must be fixed to avoid slipping.

Note:
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The functionality ‘Nonlinear Line Support’ defines a specific type of soil spring developed for the Pipfas

project (Buried Pipe Design).

5.5 2D Elements

5.5.1 2D Membrane Elements — Not in Professional Edition

This option is implemented in module esas.37 and included in the Expert edition. So with the

Professional edition the option of Membrane elements as described in this chapter, will not be possible.

Membrane elements are defined as shell elements which have no flexural stiffness and no axial

compression stiffness.

Membrane elements can thus be used to model canvas, nets, etc. that are subjected to axial tension.

To obtain realistic results, a 2" Order calculation needs to be executed using the Newton-Raphson

method.

To input 2D membrane elements, the functionalities Nonlinearity > Geometrical nonlinearity and
Membrane Elements must be activated.

Basic data

Functionality | Actions

Pratection

When defining the 2D element, the option Membrane must be chosen as FEM nonlinear model.

Property modifiers
Parametric input
Climatic leads
Muobile loads
Dynamics

Stability

Nanlinearity

Structural model
IFC properties
Prestressing
Bridge design
Excel checks

Document

Nonlinearity
Beam local nonlinearity
Suppert nonlinearity/basic soil...

Initial imperfections

|Ge0metrica| nonlinearity

General plasticity
Compression-only 2D members
Cables

Friction suppert/Soil spring
Membrane elements
Sequential analysis
Subsoil

Seil interaction

Pile Design [NEN method]
Pad foundation check
Steel

Plastic hinge analysis

Cancel
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B 20 member

Marme

Elernent type
Elernent behaviour
Type

Material

FEM model

FEM nenlinear model

Thickness type

Thickness [mm]

LCS type

Swap crientation
LCS angle [deg]

Layer

52

Standard
Standard FEM
plate (111)
5235

|sotropic

Membrane

constant

200
Standard
[T no
0,00

Layerl

OK

|| Cancel |

Note:

- Membrane elements can only be modelled in a General XYZ environment.

- Due to the fact the flexural rigidity is zero, no ribs, orthotropic parameters or physical non-linear data can

be inputted on a membrane element.

- Since a membrane element has no axial compression stiffness, no concrete calculation can be performed on
this type of element.

Example: Membrane.esa

In this project, a textile canvas is modelled. At the four corners of the canvas, steel cables are
attached. Two cables are subjected to a tensile force of 50kN in horizontal direction.

82



Since the canvas has an initial position 0,5m lower than the endpoint of the cables, the canvas will first
be pulled straight.

Since both cable and membrane elements are used, a 3’ Order non-linear analysis is executed
using the Newton-Raphson method.

The deformed mesh for the non-linear analysis shows that the canvas has been pulled straight:

When the scale of the results is augmented, the typical deformation of the membrane element can
clearly be seen:

The tensile forces for the cable elements are shown on the following figure:
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The principal membrane force n1 shows the tensile forces in the canvas:

n1 [kN/m]
887.18
540.00
600.00
560.00
520.00
430.00
440.00
400.00
360.00
320.00
280.00
240.00

200.00
160.00
120.00
80.00
13.18

In the same way, n2 can be shown:

an [kN/m]
8158
72.00
65.00
60.00 <
54.00

4300
4200
35.00
30.00
24.00 +—
18.00
12.00
8.00
-383

The results show the 2" Order effect: due to the tensile forces in one direction, the canvas obtains a
stiffness which results in compression membrane forces.
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5.5.2. Pressure only

To input pressure only for 2D elements, the functionality Nonlinearity and Compression - only 2D

members must be activated.

Easic data

Functionality | Actions

Unit Set

Protection

Property modifiers

Parametric input

Climatic loads

MNonlinearity

Bearn local nonlinearity

Suppert nonlinearity/basic soil...

W
'
'
W

With this option, tension in 2D elements can be automatically eliminated. This is mostly used for

masonry elements. In below some examples are shown to clarify this option.

Mebile loads Initial imperfections
Cynamics Geometrical nenlinearity
Stability General plastici
Menlinearity
Structural model L Cables
IFC properties Friction support/Seil spring !
Prestressing Membrane elements
Bridge design Sequential analysis
KP1 application Subsoil
Excel checks Soil interaction
Document Pile Design [MEM method]
Substitution beam Pad foundation check
Steel
Plastic hinge analysis v
Cancel

Example: PressureOnlyl.esa

This project illustrates the use of pressure only elements.
In this project two 2D-elements are modelled. The first one is modelled as an isotropic element with
no nonlinearity, the second one is a pressure only element:

~100,00
~100,00

o R o i B R R R b 2 e v PR e e R

-100,00

100,00

-

R e s % R 53 g B e B i A o i o R e
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Properties - 1 Properties -
2D member (1) - e Y 2D member (1) - B Y
& &
Mame 51 MName 52
Element type Standard - Elernent type Standard
Elernent behaviour Standard FEM Element behaviour Standard FEM
Type plate (90) & Type plate (90)
Shape Flat Shape Flat
Material C30/37 = Material C30/37 ..
FEM model Isotropic - FEM model lsotropic

FEM nenlinear model none

Thickness type constant
Thickness [mm] 200
Member system-plane at ~ Centre
Eccentricity z [mm] 0

LCS type Standard
Swap orientation no
LCS angle [deg] 0,00
Layer Layerl

FEM nonlinear model Press only

Thickness type
Thickness [mm]
Member system-plane at
Eccentricity z [mm]

LCS type

Swap orientation

LC5 angle [deg]

Layer

constant
200
Centre
0
Standard
no
0,00
Layerl -R

When calculating those elements, for every mesh element a certain orthotropy will be inserted. At the first
iteration step all the pressure only elements, will be calculated as an isotropic element. After the first
calculation, SCIA Engineer will input another stiffness on all elements in tension. So a certain orthotropy will
be created. With this stiffness the tension capacity of this element will decrease. After adapting the
orthotropic parameters a new calculation will be performed. After this second iteration step again the
elements in tension will get another stiffness. This process will be repeated until equilibrium is reached.

The difference between the isotropic and orthotropic elements can be clearly view looking at the normal

force ny for these members:

—100,00
—100,00

—100,00

=] ny [kN/m]
8 0.40
n -0.00

-50.00
-120.00
-180.00

-240.00
-300.00
-360.00
-420.00

-480.00

-517.65

In these results the real pressure of this element is visible for the right element. Looking at the trajectories of
this normal force, the trajectory of the pressure force will be even more visible:
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1 1 1 20.00
§0.00
‘ ‘ ‘ 40.00
‘r \ (M) |'¥ b et ‘F 20.00

I 0.00

-20.00

-40.00

-50.00
-80.00

Sl
G S 3

-98.597

el

Example: PressureOnly2.esa

When looking at the pressure diagonals in a reinforced 2D concrete element, ribs can be imported as
reinforcement.

In this example a plate with a bearing support is inserted with two ribs acting as the reinforcement of

the plate:
} =P
‘N
|l T‘l_ Y

Looking at the results of this 2D element, the pressure diagonals inside this element are clearly visible:
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A stability calculation calculates the global buckling mode (eigenmode) of a structure under the given
loading. In addition, the ratio between the buckling load and the applied load is given.

Stability calculations are used to obtain an insight into the buckling mechanisms of a structure, to
calculate the buckling length of a member for use in the Steel Code Check, to verify if 2" Order
calculations are required,...

6.1 Stability Combinations

As seen for a non-linear analysis, the principle of superposition is also not valid for a Stability
calculation. The combinations have to be assembled before starting the calculation. In SCIA.Engineer,
this is done by defining Stability Combinations.

= }E Load cases, Combinations
¥ Load Cases
J#* Load Groups
I Combinaticns
I¥* Stability combinations
Result classes

A stability combination is defined as a list of load cases where each load case has a specified
coefficient.

B Stability combinations .
Mz BB 2 & @FE e Y
51 [Name | 51
52 Contents of combination
53 Self weight [-] 1,00
54 Self weight (cladding + roof) [-] 1,00
>3 Wind W1 [-] 1,350
MNew from linear combinations MNew Insert Edit Delete Close

As specified for the non-linear combinations, it is possible to import the linear combinations as stability
combinations.

6.2 Linear Stability

During a linear stability calculation, the following assumptions are used:
- Physical Linearity.
- The elements are taken as ideally straight and have no imperfections.

- The loads are guided to the mesh nodes, it is thus mandatory to refine the finite element mesh in
order to obtain precise results.

- The loading is static.

- The critical load coefficient is, per mode, the same for the entire structure.
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- Between the mesh nodes, the axial forces and moments are taken as constant.

The equilibrium equation can be written as follows:

[Kg — Kgl-u=F
The symbol u depicts the displacements and F is the force matrix.
As specified in the theory of the Timoshenko method, the stiffness K is divided in the elastic stiffness
Ke and the geometrical stiffness K. The geometrical stiffness reflects the effect of axial forces in
beams and slabs.
The basic assumption is that the elements of the matrix K¢ are linear functions of the axial forces in the
members. This means that the matrix Ke corresponding to a At multiple of axial forces in the structure

is the At multiple of the original matrix Ke.

The aim of the buckling calculation is to find such a multiple A for which the structure loses stability.
Such a state happens when the following equation has a non-zero solution:

[Kg —A-Kgl-u=0
In other words, such a value for A should be found for which the determinant of the total stiffness matrix
is equal to zero:

KE - A . KG = 0
Similar to the natural vibration analysis, the subspace iteration method is used to solve this eigenmode
problem. As for a dynamic analysis, the result is a series of critical load coefficients A with

corresponding eigenmodes.

To perform a Stability calculation, the functionality Stability must be activated.

Basic data | Fundtionality | Loads Combinations Unit Set  Protection |

Property modifiers Steel

Parametric input Fire resistance checks

Climatic loads Steel connections I
Mobile loads Scaffolding '
Dynamics 7DeF 2nd order analysis for LTB I
Stability o

MNonlinearity

Structural model
IFC properties
Prestressing
Excel checks

Document

Cancel

In the results menu, the A values can be found under the caption #|} Citicalload coefficients
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The number of critical coefficients to be calculated per stability combination can be specified under
Setup > Solver.

Note:

- The first eigenmode is usually the most important and corresponds to the lowest critical load
coefficient. A possible collapse of the structure usually happens for this first mode.

- The structure becomes unstable for the chosen combination when the loading reaches a value
equal to the current loading multiplied with the critical load factor.

- A critical load factor smaller than 1 signifies that the structure is unstable for the given loading.

- Since the calculation searches for eigen values which are close to zero, the calculated A1 values can

be both positive or negative.

A negative critical load factor signifies a tensile load. The loading must thus be inversed for buckling

to occur (which can for example be the case with wind loads).

- The eigenmodes (buckling shapes) are dimensionless. Only the relative values of the deformations

are of importance, the absolute values have no meaning.

- For shell elements the axial force is not considered in one direction only. The shell element can be

in compression in one direction and simultaneously in tension in the perpendicular direction.
Consequently, the element tends to buckle in one direction but is being ‘stiffened’ in the other
direction. This is the reason for significant post-critical bearing capacity of such structures.

- Itis important to keep in mind that a Stability Calculation only examines the theoretical buckling

behaviour of the structure. It is thus still required to perform a Steel Code Check to take into account

Lateral Torsional Buckling, Section Checks, Combined Axial Force and Bending, ...

Example: Buckling_Frame.esa

A stability analysis is performed on a steel frame. The first three buckling modes are calculated and the

buckling loads are compared to the analytical results from ref.[26] to obtain a benchmark for the
stability calculation of SCIA Engineer.

Y \ 1
™
L@X A A

To obtain precise results, the number of 1D elements is refined through Calculation, mesh > Mesh
setup.
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| B Mesh setup X ‘
Mame Mesh5etupl Al
Average number of tiles of 1d element 20 I
Average size of 2d element/curved element [m] 1,000 ‘
Advanced mesh settings
General mesh settings
Minimal distance between definition point and line [m] 0,001
Definition of mesh element size for panels Automatic -
Average size of panel element [m] 000 |
Elastic mesh |
Hanging nodes for prestressing !
1D elements '
Minimal length of beamn element [m] 0,100 i
Maximal length of beam element [m] 1000,000 |
Average size of cables, tendons, elements en subsoil, nonlinear seil spring [m] 1,000 i
Generatinn of nodes in connectinons of heam elements o ~

2 & | Cancel

Under Calculation, mesh > Solver setup the Number of critical values can be specified. In addition,
the Shear Force deformation is neglected to have a good comparison with the analytical results.

B Solver setup s

Mame Solversetupl ~
Advanced solver settings

General

Meglect shear force deformation [ Ay, Az => A) ™

Type of solver Direct - |
Mumber of sections on average member 10 !
Warning when maximal translation is greater than [mm] 1000,0

Warning when maximal rotation is greater than [mrad] 100,0 I
Coefficient for reinforcerment 1 i

Initial stress |

Stability |
Type of eigen value sohver Subspace iteration -
I |
Sail

Sten for snil fAwater nressure [ml 0.500 =

2 & | Cancel

After executing a Stability calculation, the following critical load coefficients are obtained:

Critical load coefficients

Stability combination : 51
1 2,22
2 2,89
3 3,54

The corresponding buckling modes can be shown under Displacement of nodes by viewing the
Deformed mesh for the Stability Combination.
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Buckling mode 1 — Critical load factor 4 = 2,21

LLDX A

Buckling mode 2 — Critical load factor 4 = 2,89

<

Buckling mode 3 — Critical load factor 4 = 3,53

/ kL / |

The loading F on each column is 100 kN so the critical buckling load N¢r can be calculated as:

This gives the following results which can be compared to the analytical calculation:

Ner for SCIA Engineer Ref.[26]

Buckling Mode 1 222 kN 221.5kN
Buckling Mode 2 289 kN 289.6 kN
Buckling Mode 3 354 kN 353.8 kN
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Example: Buckling_Arch.esa

When calculating for example an arched steel bridge, one of the required parameters for a Steel Code
Check is the buckling length of the arch. Using a stability calculation, the buckling factor of any member
can be obtained.

As an example, a steel parabolic arch is modelled with two fixed end points. The arch has a horizontal
length of 10m, height 2m and is loaded by a vertical line load of 30 kN/m.

The Shear Force deformation is neglected to have a good comparison with analytical results. Using
an Average Mesh size for curved elements of 0,1m, a Stability Calculation yields a critical load
factor of 0,46.

MNarmne MeshSetupl ~

Average number of tiles of 1d element 1

Average size of 2d element/curved element [m] 0,100 r

Advanced mesh settings

General mesh settings

Minimal distance between definition point and line [m] 0,001 |
Definition of mesh element size for panels Autormatic - |
Average size of panel element [m] 1,000 |
Elastic mesh

Hanging nodes for prestressing % |
1D elements |
Minimal length of beam element [m] 0,100 |
Mazximal length of beam element [m] 1000,000 v

Average size of 2d element/curved element

2 @ | Cancel

Critical load coefficients

Stability combination : S1
1 046
2 0,77
3 1,30
4 1,82

The first buckling mode has the following shape:
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X

This result can be checked using an analytical formula from Ref.[28]. The critical lineload for a fixed-
fixed arch with height 20% of the support distance is given as:

P = 103,27

With: E = Modulus of Young = 210000 N/mm?2
| = Moment of inertia = 666666,67 mm*
L = Distance between supports = 10000 mm

=  Peor = 14,448 KN/m

The loading P on the structure was 30 kN/m so the critical load coefficient can be calculated as:

14,448 kN /m
1 = Ber = 14448 KN/m _ 0,48
3 30 kN/m

This result corresponds to the result of SCIA Engineer.

Using the critical load coefficient, the buckling load of the arch can be calculated. The minimal normal
force N under the given loading is 195,82 kN. The minimal is used since this will give a conservative

result for the buckling length.

—195.82 kN

The buckling load Ncr can then be calculated as:
N, =A-N=0,46-19582 =90,0772 kN

Applying Euler’s formula, the buckling factor k can be calculated:

_ m*El

cr — (k'S)Z
1 w*E-l

D k=--
S Ner

In which s specifies the arch length of 10,982m
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The parameters can now be inputted:

k =

1 [m*-E-I _ 1 7% - 210000N /mm? - 666666,67mm* ~0.36
S )

N,  10982mm 90077,2N

This buckling factor can now be inputted in the buckling data of the arch so it can be used for a Steel
Code Check.

This example illustrates the use of a stability calculation for a simple arch. The same procedure can
now be applied to more complex structures like arched bridges, truss beams, concrete buildings,...

Example: Buckling_Arch_FEM.esa

To illustrate the use of stability in finite element calculations, the arched bridge of the previous example
is modelled as a shell element.

Using an Average Mesh size of 2D element of 0,1m, a Stability Calculation yields the following
critical load factor:

Critical load coefficients

Stability combination : 51
1 0,47
2 0,79
3 137
4 1,92

The corresponding buckling mode can be shown by viewing the Deformed Mesh under 2D Members
> Deformations of Nodes
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The result corresponds to the analytical solution shown in the previous example.

Example: Buckling_Arbitrary_Profile.esa

In this example, the buckling load for a composed column is calculated. The column has a variable
section consisting of two different cross-sections.
The critical buckling load is compared with the analytical result from Ref.[6].

i

AN
The loading is taken as 1 kN so the critical load coefficient equals the critical buckling load. To obtain a
correct comparison with the analytical calculation, the shear force deformation is neglected:
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MName SolverSetupl o)
Advanced solver settings

General
Meglect shear force deformation ( Ay, Az >> A) r
Type of solver Direct -
MNumber of sections on average member 10 !
Warning when maximal translation is greater than [mm] 1000,0
Warning when maximal rotation is greater than [mrad] 100,0 I
Coefficient for reinforcement 1

Initial stress |

Initial stress

Stability

Type of eigen value solver Subspace iteration -
Mumber of critical values 4

Sail hd

5 &

The formula for the buckling load of a member with arbitrary cross-section is given in Ref.[6], pp.114 by
formula (2-48):

m'E'Iz
CT:T

With m a parameter depending on the length of the different sections and the ratio l1/l2. This
parameter is specified in table 2-10 of Ref.[6].

I1 8.356 10’ mm*
I2 4,190 108 mm*
a 4m

| 10 m

all 0.4

11/1> 0.2

m 4.22

Per 3713 kN

A Stability Calculation gives the following result:

Critical load coefficients

Stability combination : S1
1 3706,75
2 87358,02
3 29795,28
4 44526,39

This result corresponds to the analytical solution.
The corresponding buckling mode has the following shape:
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Note:

The buckling shapes can be animated through View > New Animation Window

Example: Stability EC3.esa

As seen during the 2" Order calculations, according to EC3 Ref.[27], a 15t Order analysis may be used
for a structure, if the increase of the relevant internal forces or moments or any other change of
structural behaviour caused by deformations can be neglected. This condition may be assumed to be
fulfilled, if the following criterion is satisfied:

a, === 210 for elastic analysis.
Ed
With:  Qer The factor by which the design loading has to be increased
to cause elastic instability in a global mode.
Fed The design loading on the structure.
Fer The elastic critical buckling load for global instability,
based on initial elastic stiffnesses

The factor acrthus corresponds to the critical load coefficient calculated through a Stability calculation.
The frame was regarded in a previous example and had the following geometry:

EX A A

A Stability Calculation gives the following critical load coefficients for the design loading:
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Critical load coefficients

Stability combination : S1
1 0,00
2 0,00
Stability combination : 82
1 13,18
2 71,43
Stability combination : S3
1 15,17
2 88,24
Stability combination : 54
1 13,21
2 79,44
Stability combination : S5
1 13,35
2 65,31

The lowest positive factor of 13,17 has the following buckling shape:

e

L

Since this lowest factor is higher than 10, this implies that a 15t Order calculation may be executed;
the structure is thus not sensitive for 2" Order effects.

Example: Stability_Imperfection.esa

In Chapter 6, the use of the buckling shape as imperfection according to EC3 was discussed. In this
example, the procedure is illustrated for a column.

The column has a cross-section of type IPE 300, is fabricated from S235 and has the following relevant

properties:
‘!’-_' )
E = 210.000 N/mm2 fy = 235 N/mm?2 ym1 = 1.00
L = 5000 mm A =5380 mm?2
ly = 83560000mm* Wiy = 628400 mm?3
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Calculation of the buckling shape

First a Stability calculation is done using a load of 1kN. This way, the elastic critical buckling load Ner
is obtained. In order to obtain precise results, the Number of 1D elements is set to 10. In addition, the

Shear Force Deformation is neglected so the result can be checked by a manual calculation.
The stability calculation gives the following result:

Critical load coefficients

Stability combination : §1
1 [6927,50

This can be verified with Euler’s formula using the member length as the buckling length:

w2 E-1 7 -210.000— - 83560000mm®*

2
N, = = mm =6927,51 kN
r 2 (5000 mm)?

The following picture shows the mesh nodes of the column and the corresponding buckling shape:

Displacement of nodes

Stability calculation, Extreme : No

Selection : All

Stability combinations : S1/1 - 6927,50

Buckling shapes are dimensionless, units are printed for consistency purposes.

Node of mesh Case Ux Uz Fiy
[mm] | [mm] | [mrad]

1 S1/1 - 6927,50 0,00 0,0 6283
11 51/1 - 6927,50 309,0 0,0 597,6
3 51/1 - 6927,50 587,8 0,0 508,3
4 S1/1-6927,50 | 809,0 0,0/ 3693
5 S1/1-6927,50 | 951,1] 0,0 1942
6 S1/1 - 6927,50 | 1000,0| 0,0 0,0
7 51/1 - 6927,50 951,1 0,00 -194,2
8 51/1 - 6927,50 809,0 0,00 -369,3
9 S1/1-6927,50 | 587,8] 0,0] -508,3
10 S1/1-6927,50 | 309,0] 0,0 -597,6
2 S1/1 - 6927,50 0,00 0,0/ -6283

Using for example an Excel worksheet, the buckling shape can be approximated by a 4™ grade
polynomial.
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Buckling Shape
1200
1000 / . \'\
BOO
=
2
-
(]
E 600
=
a
400
200 / yw=5 724E-12x*-5 723E-08x% + 1 BO1E-05x%+ 5 208E-01x \
] \
1] 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Length [mm]

A polynomial has the advantage that the second derivative can easily be calculated.

S 7o = 5724 10712 - x* = 57231078 - x* + 1,891+ 1075 - x2 + 6,208 - 10" - x
S b =2290 1071 - x3 — 1,717 1077 - x% + 3,782 - 1075 - x + 6,208 - 10~
S 7o = 6869 1071 - x2 —3,434-1077 - x + 3,782 - 1075

Calculation of e

Ngi = f, - A=235 - 5380mm? = 1264300 N

mm?

Mg = f, - Wy, = zssmfn — 628400mm® = 147674000 Nmm (Class 2)
Lo TN - 12643001v_043
=V Neie/ Ner = 6885280 N

(& =0,21 for buckling curve a

1

Cos [1+a(i-02) + (@] + (05 [1 +a(T-02) + @]) - @)’

= 0.945

X

These intermediate results can be verified through SCIA Engineer when performing a Steel Code
Check on the column:

Buckling parameters yy
Sway type non-sway
Systemn length L 5,000

102



Buckling parameters yy

Buckling factor k 1,00
Buckling length L. 5,000
Critical Euler load M. 6927.86
Slenderness A 40,12
Relative slenderness ha | 0,43
Limit slenderness Awg 0,20

@
e =a(1—02)-@-l
0 NRk 1+X(/T)2

=a(1-0.2) MR"—021(043 0.2) 147674000Nmm—5642
e =a . N . . 1264300 N = 5. mm

The required parameters have now been calculated so in the final step the amplitude of the
imperfection can be determined.

Calculation of 7init
The mid section of the column is decisive = x = 2500 mm

T at mid section = 1000
Ner = 6,869 - 10711 - 25002 — 3,434 - 1077 - 2500 + 3,782 - 1075 = —3,912 - 10™* - 1/mm?

N, 6885280 N
‘Ner = 5,642 mm 5 —
210000N /mm? - 83560000 mm* - 3,912 -10=*-1/mm

Ninit = €o E- 71000

Iy *Nermax

=5,659 mm
This value can now be inputted as amplitude of the buckling shape for imperfection.
To illustrate this, the column is loaded by a compression load equal to its buckling resistance.

However, due to the imperfection, an additional moment will occur which will influence the section
check. The buckling resistance can be calculated as follows:

Npra = S Y — 0,945 - 5380 mm? - — _ 1194 76 kN
Ym1 1.00

A non-linear combination is created in which the buckling shape as imperfection is specified.
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| Aga BB 9 & A mEv;
MNC1 Marne MNC1

Description

Type Ultimate -
Contents of combination
LC2 - Load 119476 kN [-] 1,00

Bow imperfection Mone -
Global imperfection Buckling shape -
Stability 51 -
Eigen shape 1

Max deformation [mm] 57

New Insert Edit Delete Close

Using this combination, a non-linear 2"® Order calculation is executed using Timoshenko’s method.

The additional moment can be easily calculated as follows:

1 1
Mmm-: = NEd *MNinic ~ 1_—Nid = 1194.76 kN -5.659 mm - m =8.18 KNm
N, 6885.28 kN

When performing a Steel Code Check on the column for the non-linear combination, this can be
verified. The critical check is performed at 2,5m and has the following effects:

The critical check is on position 2.500 m

Internal forces |Calculated |Unit
N,Ed -1194,76 kN
'y, Ed 0,00 kN
\Vz,Ed 0,66 kN
T,Ed 0,00 kNm
My, Ed 8,16 kNm
Mz,Ed 0,00 kNm

The additional moment thus corresponds to the moment calculated by SCIA Engineer.

As seen in the diagram, Path 3 is followed: the buckling shape serves as a unique global and local
imperfection. This implies that only a section check and Lateral Torsional Buckling need to be checked.
Since LTB is negligible with this small bending moment, only a section check is required.

This example has illustrated the use of a buckling shape as imperfection. Depending on the geometry
of the structure, this imperfection can have a large influence on the results due to the additional
moments which occur.

When using this method, it is very important to double check all applied steps: small changes to the
loading or geometry require a re-calculation of the buckling shape and amplitude before a non-linear
analysis may be carried out.

As a final note: the buckling shape only gives information about a specific zone of the structure. The
imperfection is applied at that zone and results/checks are only significant for that zone. Other
combinations of loads will lead to another buckling shape thus to each load combination a specific
buckling shape must be assigned and a steel code check should only be used on those members on
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which the imperfection applies. Since the applied buckling shape corresponds to a global mode, failure

of these members will lead to a collapse of the structure.

6.3 Non-Linear Stability

As specified in the assumptions of the previous paragraph: a Stability calculation is by default a linear

process. Non linearities like friction supports, pressure only supports... are not taken into account.

Specifically for this purpose, SCIA Engineer provides the use of a Non-Linear Stability Calculation. This
type of calculation has the following additions to the Linear Stability calculation:

- Local Non-Linearities are taken into account

- 3" Order effects are taken into account using the Modified Newton-Raphson algorithm.

Modified Newton-Raphson follows the same principles as the default method but will automatically

refine the number of increments when a critical point is reached and will only update its stiffness matrix
every N iterations. This method can therefore give precise results for post-critical states.

SCIA Engineer will perform a 3@ Order calculation taking into account Local Non-Linearities. After this
calculation, the resulting deformed structure is used for a Stability calculation. As a result, the Critical
Load Factor of the structure is obtained for the structure including Non-Linearities.

To activate the Non-Linear Stability calculation, the functionalities Stability and Nonlinearity >

Geometrical nonlinearity must be activated.

Basic data | Functionality | Actions Unit Set  Protection
Property modifiers MNonlinearity -
Parametric input Bearn local nonlinearity
Climatic loads Support nonlinearity/basic soil...
Mobile loads Initial imperfections
Dynamics IGeometricaI nonlinearity | v I
Stability General plasticity
| Monlinearity Cables

Structural model
IFC properties
Prestressing
Bridge design
Excel checks

Document

Friction support/Soil spring
Sequential analysis
Subsoil

Pile Design [MEM method]
Pad foundation check
Steel

Plastic hinge analysis

Fire resistance checks

Steel connections
Scaffolding

In addition, Support and/or Beam local nonlinearities can also be activated.

The choice of the 3 Order Theory, the amount of increments and the maximal amount of iterations

can be specified through Calculation, Mesh > Solver Setup.

Cancel
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i 5o 5%
MName Solversetupl Al
Advanced solver settings
General
Nonlinearity
Geometrical nonlinearity 3rd order (large deformation) -
Method of calculation MNewton-Raphson - |
Mumber of increments 5
Maximum iterations 50 |
Selver precision ratic 1 [
Solver robustness ratio 1 !
Initial stress
Initial stress |
Stability
Type of eigen value solver Subspace iteration -
Mumber of critical values 1 ~

Since the non-linear stability calculation automatically implies the Modified Newton-Raphson method

Cancel

for the solver, this method cannot be chosen here. The reason why this field is available is to perform a
normal 3 Order Calculation using Modified Newton-Raphson instead of a Stability Calculation.

Since the Modified Newton-Raphson method also applies the loading using increments, it is important

to set a right amount of increments. This implies that it is advised to choose the Newton-Raphson

method so the user has access to the number of increments.

Example: Stability Falsework.esa

In this example, a Stability analysis is carried out on a large falsework structure measuring 15m x 15m

X 12m.
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Beam nonlinearty SPCD1 Gap

Z%
-

i

The structure is loaded by its self-weight, formwork and concrete for a total loading of +/- 18.000
tonnes.

First a Linear Stability calculation is carried out to evaluate the critical load factor. The number of 1D

elements is set to 5 to obtain good results without severely augmenting the calculation time.

The following result is obtained:

Critical load coefficients

Stability combination : §1
1 [1,94

The critical load factor is smaller than 10 which indicates that the structure is susceptible to 2" Order
effects. Therefore a 2" Order calculation is carried out using Timoshenko. The number of increments
is set to 5 and the maximal number of iterations is set to 50.

The 2M Order calculation leads to the following message:
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Calculation  Monlinear

| oo ]

[m] [deg]

FE-Calculation &4 - Warning >

The stiffness matrix is singular!
The structure is unstable, Instability found
in FE-node Mo, K252, direction ¥, increment 1.

[ ] Stop after this nonlinear combination No. 1.

| Redraw graph Show Data Table...

Break Fause

This implies that the 2" Order calculation does not converge to a result but leads to instability. The
guestion now rises as to what causes this instability.

This is the point where the Non-Linear Stability calculation comes in. During the Linear Stability
Calculation, the Gap elements on the diagonals of the structure were not taken into account. A Non-
Linear Stability calculation takes into account both 2" Order effects and the Gap elements.

The Non-Linear Stability Calculation gives the following result:

Critical load coefficients

Stability combination : S1
1 [0,40
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This result gives a very important conclusion: the structure including all Gap elements is not capable of
supporting the loading. Only 40% of the loading can be supported before instability occurs. This is the
reason why the 2™ Order calculation does not pass.

When Local Non-Linearities are used, it is mandatory to execute a Non-Linear Stability calculation to
draw correct conclusions concerning the global buckling of the structure.
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7. Troubleshooting

In this final Chapter, some common failure messages are given which can occur during a non-linear
analysis.

7.1 Singularity

Singularity problems occur frequently during a non-linear calculation. Messages of the following type
are generated by SCIA Engineer:

The stiffness matrix is singular!
The structure is unstable. Instability found £ Calculation aborted.

in FE-nade Mo. K973, direction X, increment 3 .

The singularity can be checked by running the check of singularities:

It's possible that calculation failed by singularity of construction.
Do you want to run check of singularity?

| | Frames per second : Mode of calculation : ILinear vl

Play time (s) :

110



The cause of these messages can be the following:

The structure is a mechanism: check supports, hinges, unconnected members,...

The structure becomes a mechanism by eliminating elements (members, supports,...) Examples
include tension only diagonals which are all eliminated, a subsoil (only compression) which
comes entirely under tension,...

The structure becomes unstable due to the creation of plastic hinges.
The entire structure or part of it buckles. In the stiffness matrix this implies that Ke > Ke

The instability is caused due to small section properties of manually inputted cross-sections. In
many cases, the torsional resistance I: is too small.

As explained in the theory, the Timoshenko method is not suitable when the normal force in a
member is larger than its critical buckling load. In this case, Newton-Raphson should be applied.
To find out which cross-section causes this problem, the sections can be modified alternately
until the 2" Order calculation passes.

7.2 Convergence

If, during a non-linear analysis the criterion of convergence is not met, messages of the following type
are generated by SCIA Engineer:

% Calculation is done.
¥ Maximal number of iteration was reached.

Do you accept such results 7

The cause of these messages can be the following:

Too few iterations have been specified in the Solver Setup.
The structure is close to instability.
Cyclic elimination of members or supports: the elements are eliminated during an iteration and

are re-instated during the following iteration.

To examine this in detail, the calculation can be executed for for example three iterations: take
iteration i-1, i and i+1 and compare the results.

In these results, there will be a difference in one member (for example in one iteration the
member is in tension, in the following iteration it is in compression).

If the non-linear stability calculation does not converge, make sure 2" Order is activated as
functionality.

111



Advanced Professional Training — Non Linear and Stability

References

[1] V. Kolar, I.Nemec, V. Kanicky, FEM : Principy a praxe metody konecnych prvku,
Computer Press, 1997

[2] W. Nijenhuis, De Verplaatsingsmethode, 1973

[3] J. Blauwendraad, A.W.M. Kok, Elementenmethode 2, Agon Elsevier, Amsterdam/Brussel,
1973

[4] K.J. Bathe, Finite Element Procedures in Engineering Analyis, Prentice-Hall, Inc.

Englewood Cliffs, New Jersey, 1982

[5] J.S. Przemieniecki, Theory of Matrix Structural Analyis, McGraw-Hill Book Company,
1968

[6] S. P. Timoshenko, J. M. Gere, Theory of elastic stability, McGraw-Hill Book Company,
1963

[7] Stahl im Hochbau, 14. Auflage, Bandl / Teil 2, Verein Deutscher Eisenhlttenleute,

Dusseldorf, 1985

[8] ESA 3 2de Orde Beton, Raamwerken 2de Orde Theorie Beton, Scientific Application
Group S.V,, 1981

[9] C. Petersen, Stahlbau : Grundlagen der Berechnung und baulichen Ausbildung von
Stahlbauten, Friedr. Vieweg & Sohn, Braunschweig 1988

[10] Eurocode 3, Design of steel structures, Part 1 - 1 : General rules and rules for buildings,
ENV 1993-1-1:1992, 1992

[11] FEM 10.2.02, The Design of Steel Pallet Racking, Fédération Européenne de la
Manutention, Section X, July 2000

[12] Eurocode 3 : Part 1.1., Revised annex J : Joints in building frames, ENV 1993-1-1/pr A2

[13] SCIAESA PT Connect Frame & Grid, Theoretical Background, Release 4.40, SCIA,
04/2004

[14] Esa Prima Win Connect Frame, Truss Connection, Bolted diagonal connection, Manual,

Release 3.30, SCIA, June 2001

[15] DIN 18800 Teil 1, Stahlbauten : Bemessung und Konstruktion, Beuth Verlag GmbH,
Berlin, 1990
[16] DIN 18800 Teil 2, Stahlbauten : Stabilitatsfélle, Knicken von Staben und Stabwerken,

Beuth Verlag GmbH, Berlin, 1990

[17] Beuth-Kommentare, Stahlbauten : Erlduterungen zu DIN 18800 Teil 1 bis Teil 4, Beuth,
Ernst & Sohn, Berlin, 1993

[18] U. Kuhlmann, Stahlbau Kalender 1999, Ernst & Sohn, 1999

112



[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

M. Braham, E. Lascrompes, L'analyse élastique des ossatures au moyen de I'Eurocode 3,
Revue Construction Métallique, n° 4-1992

Frame design including joint behaviour, Volume 1, ECSC Contracts n° 7210-SA/212 and
7210-SA/320, January 1997

Ontwerp-handboek voor geschoorde of zijdelings stijve stalen gebouwen volgens EC3,
ECCS n° 85, 1996,

Construction métallique et mixte acier-béton, Calcul et dimensionnement selon les
Eurocodes 3 et 4, APK, Eyrolles, 1996

Esa Prima Win Benchmark PST.06.01 — 07 , Example Code Check and Connections
according to EC3 : Design of an industrial type building, SCIA

NEN 6770, Staalconstructies TGB1990, Basiseisen en basisrekenregels voor overwegend
statisch belaste constructies

NEN 6771, Staalconstructies TGB 1990, Stabiliteit

EULER : Computerprogramma voor de bepaling van de lineair elastische krachtsverdeling,
Eulerse kniklasten en knikvormen van raamwerken, TNO rapport BI-85-1/63.1.0310, Mei,
1985

Eurocode 3, Design of steel structures, Part 1 - 1: General rules and rules for buildings, EN
1993-1-1:2005.
Vandepitte D., Berekening van Constructies (Calculation of Structures), Story-
Scientia, Gent, 1979. www.berekeningvanconstructies.be

Hoglund T., Beams-Columns, Alternative Imperfection according to Eurocode 9,
2005.

113


http://www.berekeningvanconstructies.be/

	Introduction
	1.1. Professional training
	1.2. Introduction to non linear and stability

	Non-Linear behaviour of Structures
	2.1. Type of Non Linearity
	2.2. Non Linear Combinations

	Geometrical Non-Linearity – also possible with Concept edition
	3.1. Overview
	3.2. Alpha critical
	3.3. Imperfections
	3.3.1. Global frame imperfection (
	Simple Inclination
	Deformation from Load case
	Inclination Functions
	Buckling Shape

	3.3.2. Initial bow imperfection e0
	Simple Curvature
	According to Buckling Data

	3.3.3. Example Global + Bow imperfection

	3.4. The second order calculation
	3.4.1. Timoshenko
	3.4.2. Newton-Raphson


	Physical Non-Linearity
	4.1 Plastic Hinges for Steel Structures
	4.2 Physical Non-Linear analysis for Concrete Structures
	4.3 General Plastic analysis
	4.3.1 von Mises yield criterion
	4.3.2 Finite element model
	4.3.1 Material properties
	4.3.4 General plasticity in SCIA Engineer


	Local Non-Linearity
	5.1. Beam Local Nonlinearity – also available in the concept edition
	5.1.1 Members defined as Pressure only / Tension only
	5.1.2 Members with Limit Force
	5.1.3 Members with gaps

	5.2. Beam Local Nonlinearity including Initial Stress
	5.2.1 Members with Initial Stress
	5.2.2 Cable Elements – Not available in the Professional edition

	5.3. Non-Linear Member Connections
	5.4. Support Nonlinearity
	5.4.1. Tension only / Pressure only Supports
	5.4.2 Nonlinear Springs for Supports
	5.4.3 Friction Supports

	5.5 2D Elements
	5.5.1 2D Membrane Elements – Not in Professional Edition
	5.5.2. Pressure only


	Stability Calculations
	6.1 Stability Combinations
	6.2 Linear Stability
	6.3 Non-Linear Stability

	7. Troubleshooting
	7.1 Singularity
	7.2 Convergence

	References

