# **SCIAENGINEER**



## **Eurocode Training** EN 1992-1-1: Reinforced Concrete

All information in this document is subject to modification without prior notice. No part of this manual may be reproduced, stored in a database or retrieval system or published, in any form or in any way, electronically, mechanically, by print, photo print, microfilm or any other means without prior written permission from the publisher. SCIA is not responsible for any direct or indirect damage because of imperfections in the documentation and/or the software.

© Copyright 2015 SCIA nv. All rights reserved.



Eurocode Training



EN 1992-1-1: Reinforced Concrete

## Introduction



Subject of this workshop = the European Standard EN 1992

Eurocode 2: Design of concrete structures Part 1-1: General rules and rules for buildings

which has been prepared by Technical Committee CEN/TC250 «Structural Eurocodes»

## Introduction









## Section 2 Basis of design

## Section 2 Basis of design



6

#### Material and product properties

- general rules  $\rightarrow$  see EN 1990 Section 4
- specific provisions for concrete & reinforcement  $\rightarrow$  see EN 1992 Section 3

## Shrinkage and creep

- time dependent
- effects have to be taken into account in the SLS
- in the ULS: only if significant (for example 2<sup>nd</sup> order)
- quasi-permanent combination of loads

Application in Scia Engineer: Creep: CDD or PNL calculation Shrinkage: TDA calculation



### **Design values**

Partial factors for shrinkage, prestress, fatigue loads

Partial factors for materials

- ULS: recommended values

| Design situations      | $\mathcal{H}$ for concrete | $\gamma_{S}$ for reinforcing steel | $\gamma_{\rm S}$ for prestressing steel |
|------------------------|----------------------------|------------------------------------|-----------------------------------------|
| Persistent & Transient | 1,5                        | 1,15                               | 1,15                                    |
| Accidental             | 1,2                        | 1,0                                | 1,0                                     |

- SLS: recommended values

 $\gamma_c$  and  $\gamma_s = 1$ 



8



Section 3 Materials

## Section 3 Materials



## **Characteristic strength**

## **Compressive strength**

- denoted by concrete strength classes (e.g. C25/30)
- cylinder strength  $f_{\rm ck}$  and cube strength  $f_{\rm ck,cube}$
- $f_{\rm ck}$  determined at 28 days

If required to specify  $f_{ck}(t)$  at time *t* for a number of stages (e.g. demoulding, transfer of prestress):

- $f_{ck}(t) = f_{cm}(t) 8$  [MPa] for 3 < t < 28 days
- $f_{ck}(t) = f_{ck}$  for  $t \ge 28$  days

where  $f_{cm}(t) = \beta_{cc}(t) f_{cm}$  with  $\beta_{cc}(t)$  dependent on the cement class

## **Section 3 Materials**



|                                |     |     |     |     | Stren | gth cla | sses | for co | ncrete |      |     |      |     |                                                                                           | Analytical relation<br>/ Explanation                                                                                                   |
|--------------------------------|-----|-----|-----|-----|-------|---------|------|--------|--------|------|-----|------|-----|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| f <sub>ck</sub> (MPa)          | 12  | 16  | 20  | 25  | 30    | 35      | 40   | 45     | 50     | 55   | 60  | 70   | 80  | 90                                                                                        |                                                                                                                                        |
| f <sub>dk,cube</sub><br>(MPa)  | 15  | 20  | 25  | 30  | 37    | 45      | 50   | 55     | 60     | 67   | 75  | 85   | 95  | 105                                                                                       |                                                                                                                                        |
| f <sub>an</sub><br>(MPa)       | 20  | 24  | 28  | 33  | 38    | 43      | 48   | 53     | 58     | 63   | 68  | 78   | 88  | 98                                                                                        | $f_{cm} = f_{ck} + 8(MPa)$                                                                                                             |
| f <sub>dm</sub><br>(MPa)       | 1,6 | 1,9 | 2,2 | 2,6 | 2,9   | 3,2     | 3,5  | 3,8    | 4,1    | 4,2  | 4,4 | 4,6  | 4,8 | 5,0                                                                                       | $\begin{array}{l} f_{tm} = 0.30 \times f_{tr}^{(2/3)} \leq C50/60 \\ f_{dm} = 2,12 \cdot \ln(1 + (f_{cm}/10)) \\ > C50/60 \end{array}$ |
| f <sub>dk, 0,05</sub><br>(MPa) | 1,1 | 1,3 | 1,5 | 1,8 | 2,0   | 2,2     | 2,5  | 2,7    | 2,9    | 3,0  | 3,1 | 3,2  | 3,4 | 3,5                                                                                       | $f_{clk,0,00} = 0,7 \times f_{clm}$<br>5% fractile                                                                                     |
| f <sub>ak,0,95</sub><br>(MPa)  | 2,0 | 2,5 | 2,9 | 3,3 | 3,8   | 4,2     | 4,6  | 4,9    | 5,3    | 5,5  | 5,7 | 6,0  | 6,3 | 6,6                                                                                       | f <sub>dk,0,55</sub> = 1,3×f <sub>dm</sub><br>95% fractile                                                                             |
| Eon<br>(GPa)                   | 27  | 29  | 30  | 31  | 33    | 34      | 35   | 36     | 37     | 38   | 39  | 41   | 42  | 44                                                                                        | E <sub>cn</sub> = 22[(f <sub>cn</sub> )/10] <sup>0,3</sup><br>(f <sub>cm</sub> in MPa)                                                 |
| € <sub>c1</sub> (‰)            | 1,8 | 1,9 | 2,0 | 2,1 | 2,2   | 2,25    | 2,3  | 2,4    | 2,45   | 2,5  | 2,6 | 2,7  | 2,8 | 2,8                                                                                       | see Figure 3.2<br><sub>4c1</sub> (%) = 0,7 f <sub>cn</sub> <sup>0,31</sup> < 2.8                                                       |
| Eau1(‰)                        |     | 3,5 |     |     |       |         |      |        | 3,2    | 3,0  | 2,8 | 2,8  | 2,8 | see Figure 3.2<br>for f <sub>a</sub> ≥ 50 Mpa<br>c-1 <sup>(9</sup> m)=2.8+27[(98-f.,,)/10 |                                                                                                                                        |
| E <sub>c2</sub> (‰)            |     | 2,0 |     |     |       |         |      |        |        | 2,2  | 2,3 | 2,4  | 2,5 | 2,6                                                                                       | see Figure 3.3<br>for f <sub>sk</sub> ≥ 50 Mpa<br>r <sub>cs</sub> (%))=2,0+0,085(f <sub>ar</sub> 50) <sup>05</sup>                     |
| Ecu2 (‰)                       |     |     |     |     | 3,5   |         |      |        |        | 3,1  | 2,9 | 2,7  | 2,6 | 2,6                                                                                       | see Figure 3.3<br>for f <sub>ak</sub> ≥ 50 Mpa<br>r <sub>ond</sub> (%))=2,6+35[(90-f <sub>ak</sub> )/100                               |
| n                              |     | 2,0 |     |     |       |         |      |        |        | 1,75 | 1,6 | 1,45 | 1,4 | 1,4                                                                                       | for f <sub>a</sub> ≥ 50 Mpa<br>n=1,4+23,4[(90-f <sub>a</sub> )/100]                                                                    |
| ε <sub>c3</sub> (‰)            |     |     |     |     | 1,75  |         |      |        |        | 1,8  | 1,9 | 2,0  | 2,2 | 2,3                                                                                       | see Figure 3.4<br>for f <sub>5</sub> ≥ 50 Mpa<br>c <sub>63</sub> (% <sub>00</sub> )=1,75+0,55[(f <sub>or</sub> 50)/4                   |
| € <sub>cu3</sub> (‰)           |     |     |     |     | 3,5   |         |      |        |        | 3,1  | 2,9 | 2,7  | 2,6 | 2,6                                                                                       | see Figure 3.4<br>for f <sub>ck</sub> ≥ 50 Mpa<br>f <sub>ca19</sub> (%))=2,6+35[(90-t <sub>a1</sub> )/100                              |

#### EN Table 3.1 Strength and deformation characteristics for concrete

## Section 3 Materials



## Material characteristics in Scia Engineer

| 🛯 💱 🖉 🚳 📾 🖿 의                    | <u></u> | 🍜 😂 🖬 🛛 🔹 🖓                                                            |                                               |
|----------------------------------|---------|------------------------------------------------------------------------|-----------------------------------------------|
| 12/15                            |         | G modulus [MPa]                                                        | 1.3667e+04                                    |
| 16/20                            |         | Log. decrement                                                         | 0.2                                           |
| 20/25                            |         | Colour                                                                 |                                               |
| 5/30                             |         | Specific heat [J/gK]                                                   | 6.0000e-01                                    |
| 80/37<br>35/45                   |         | Temperature dependency of specific heat                                | None                                          |
| 10/50                            |         | Thermal conductivity [W/mK]                                            | 4.5000e+01                                    |
| 5/55                             |         | Temperature dependency of thermal conductivity                         | None                                          |
| 50/60                            |         | Order in code                                                          | 5                                             |
| 5/67                             |         | FN 1992-1-1                                                            |                                               |
| 0/75                             |         | Characteristic compressive cylinder strength fck(28) [MPa]             | 30,00                                         |
| 0/85                             |         | Calculated depended values                                             |                                               |
| 0/95                             |         | Mean compressive strength fcm(28) [MPa]                                | 38,00                                         |
| 0/105                            |         | fcm(28) - fck(28) [MPa]                                                | 8.00                                          |
| 5/67(EN1992-2)<br>0/75(EN1992-2) |         | Mean tensile strength fctm(28) [MPa]                                   | 2,90                                          |
| 0/85(EN1992-2)                   |         | fctk 0.05(28) [MPa]                                                    | 2,00                                          |
| 0/95(EN1992-2)                   |         | fctk 0,95(28) [MPa]                                                    | 3,80                                          |
| 0/105(EN1992-2)                  |         | Design compressive strength - persistent (fcd = fck / gamma c_p) [MPa] | 20,00                                         |
| .,                               |         | Design compressive strength - accidental (fcd = fck / gamma c_a) [MPa] | 25.00                                         |
|                                  |         | Strain at reaching maximum strength eps c2 [1e-4]                      | 20,0                                          |
|                                  |         | Ultimate strain eps cu2 [1e-4]                                         | 35.0                                          |
|                                  |         | Strain at reaching maximum strength eps c3 [1e-4]                      | 17,5                                          |
|                                  |         | Ultimate strain eps cu3 [1e-4]                                         | 35,0                                          |
|                                  |         | Stone diameter (dg) [mm]                                               | 32                                            |
|                                  |         | Cement class                                                           | N (normal hardening - CEM 32,5 R, CEM 42,5 N) |
|                                  |         | Type of aggregate                                                      | Quartzite                                     |
|                                  | E       | Measured values                                                        |                                               |
|                                  |         | Measured values of mean compressive strength (influence of ageing)     |                                               |
|                                  | E       | Stress-strain diagram                                                  |                                               |
|                                  |         | Type of diagram                                                        | Bi-linear stress-strain diagram               |
|                                  |         | Picture of Stress-strain diagram                                       |                                               |





| Design strength                                                                                                                                                                                                                            |                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Design compressive strength                                                                                                                                                                                                                |                                                                                                                                                                |
| $f_{\rm cd} = \alpha_{\rm cc} f_{\rm ck} / \gamma_{\rm C}$                                                                                                                                                                                 | (3.15)                                                                                                                                                         |
| Design tensile strength                                                                                                                                                                                                                    |                                                                                                                                                                |
| $f_{\rm ctd} = \alpha_{\rm ct} f_{\rm ctk,0,05} / \gamma_{\rm C}$                                                                                                                                                                          | (3.16)                                                                                                                                                         |
| $\alpha_{cc}$ (resp. $\alpha_{ct})$ is a coefficient taking acc                                                                                                                                                                            | count of long term effects on the compressive                                                                                                                  |
| strength (resp. tensile strength) and of                                                                                                                                                                                                   | unfavourable effects resulting from the way the                                                                                                                |
| load is applied.                                                                                                                                                                                                                           |                                                                                                                                                                |
| $\alpha_{cc}$ = 1,0 and $\alpha_{ct}$ = 1,0                                                                                                                                                                                                | (recommended values)                                                                                                                                           |
|                                                                                                                                                                                                                                            | 14                                                                                                                                                             |
| Section 3 Materials                                                                                                                                                                                                                        | 14<br>SCIA<br>A NEMETSCHER COMPANY                                                                                                                             |
| Section 3 Materials                                                                                                                                                                                                                        | 14<br>SCIA<br>A NEMETSCHEK COMPANY                                                                                                                             |
|                                                                                                                                                                                                                                            | SCIA<br>A NEMETSCHEK COMPANY                                                                                                                                   |
| Elastic deformation - dependent on composition of the cond                                                                                                                                                                                 | SCIA<br>A NEMETSCHEK COMPANY                                                                                                                                   |
| Elastic deformation - dependent on composition of the cond                                                                                                                                                                                 | crete (especially the aggregates)<br>asticity $E_{cm}$ , secant value between $\sigma_c = 0$ and                                                               |
| Elastic deformation<br>- dependent on composition of the cond<br>- approximate values for modulus of ela<br>0,4f <sub>cm</sub> : see EN Table 3.1(for quartzite a                                                                          | crete (especially the aggregates)<br>asticity $E_{cm}$ , secant value between $\sigma_c = 0$ and<br>aggregates)<br>(10%) – sandstone aggregates (30%)          |
| Elastic deformation - dependent on composition of the cond - approximate values for modulus of ela 0,4 <i>f</i> <sub>cm</sub> : see EN Table 3.1(for quartzite a Reduction for limestone aggregates (                                      | crete (especially the aggregates)<br>asticity $E_{cm}$ , secant value between $\sigma_c = 0$ and<br>aggregates)<br>(10%) – sandstone aggregates (30%)<br>(20%) |
| Elastic deformation - dependent on composition of the cond - approximate values for modulus of ela 0,4 <i>f</i> <sub>cm</sub> : see EN Table 3.1(for quartzite a Reduction for limestone aggregates ( Augmentation for basalt aggregates ( | crete (especially the aggregates)<br>asticity $E_{cm}$ , secant value between $\sigma_c = 0$ and<br>aggregates)<br>(10%) – sandstone aggregates (30%)<br>(20%) |





#### **Creep and shrinkage**

dependent on

- ambient humidity
- dimensions of the element
- composition of the concrete
- maturity of the concrete at first loading
- duration and magnitude of the loading

#### **Creep coefficient in Scia Engineer**



16

## Section 3 Materials



#### Stress-strain relation for non-linear structural analysis



 $\frac{Remark}{of E_{cm}} is approximate!$ 







## Stress-strain relations for the design of cross-sections



## **Section 3 Materials**



## **Properties**

The behaviour of reinforcing steel is specified by the following properties:

- yield strength ( $f_{yk}$  or  $f_{0,2k}$ )
- maximum actual yield strength ( $f_{y,max}$ )
- tensile strength  $(f_t)$
- ductility ( $\varepsilon_{\rm uk}$  and  $f_{\rm t}/f_{\rm yk}$ )
- bendability
- bond characteristics (f<sub>R</sub>: see Annex C)
- section sizes and tolerances
- fatigue strength
- weldability
- shear and weld strength for welded fabric and lattice girders

## **Section 3 Materials**



20

#### Material characteristics in Scia Engineer

|              |   | 🖨 🖻 🖬 Reinforcement steel 🔹 🕅                                    |                                       |  |
|--------------|---|------------------------------------------------------------------|---------------------------------------|--|
| 400A         |   | Name                                                             | B 500A                                |  |
| 500A         | E | Code independent                                                 |                                       |  |
| 500A<br>400B |   | Material type                                                    | Reinforcement steel                   |  |
| 400B<br>500B |   | Thermal expansion [m/mK]                                         | 0.00                                  |  |
| 500B         |   | Unit mass [kg/m^3]                                               | 7850,00                               |  |
| 400C         |   | E modulus [MPa]                                                  | 2,0000e+05                            |  |
| 500C         |   | Poisson coeff.                                                   | 0,2                                   |  |
| 500C         |   | Independent G modulus                                            |                                       |  |
|              |   | G modulus [MPa]                                                  | 8,3333e+04                            |  |
|              |   | Log. decrement                                                   | 0.2                                   |  |
|              |   | Colour                                                           |                                       |  |
|              |   | Specific heat [J/gK]                                             | 6,0000e-01                            |  |
|              |   | Thermal conductivity [W/mK]                                      | 4,5000e+01                            |  |
|              |   | Barsunface                                                       | Ribbed                                |  |
|              |   | Order in code                                                    | 2                                     |  |
|              | E | EN 1992-1-1                                                      |                                       |  |
|              |   | Characteristic yield strength fyk [MPa]                          | 500,0                                 |  |
|              |   | Calculated depended values                                       |                                       |  |
|              |   | Charakteristic maximum tensile strength ftk [MPa]                | 525,0                                 |  |
|              |   | Coefficient k = ftk / fyk [-]                                    | 1,05                                  |  |
|              |   | Design yield strength - persistent (fpd = fyk / gamma s_p) [MPa] | 434,8                                 |  |
|              |   | Design yield strength - accidental (fpd = fyk / gamma s_a) [MPa] | 500,0                                 |  |
|              |   | Maximum elongation eps uk [1e-4]                                 | 250,0                                 |  |
|              |   | Class                                                            | A                                     |  |
|              |   | Reinforcement type                                               | Bars                                  |  |
|              |   | Fabrication                                                      | Hotrolled                             |  |
|              |   | Stress-strain diagram                                            |                                       |  |
|              |   | Type of diagram                                                  | Bi-linear with an inclined top branch |  |
|              |   | Picture of Stress-strain diagram                                 |                                       |  |





- Specified yield strength range: f<sub>yk</sub> = 400 to 600 MPa
- Specific properties for classes A B C: see Annex C

| Product form                                                                                    | Bars a | nd de-coi                     | led rods       | Wire Fabrics |       |                | Requirement or<br>quantile value (%) |  |
|-------------------------------------------------------------------------------------------------|--------|-------------------------------|----------------|--------------|-------|----------------|--------------------------------------|--|
| Class                                                                                           | А      | в                             | с              | A            | В     | с              | -                                    |  |
| Characteristic yield strength $f_y$ or $f_{0,2k}$ (MPa)                                         | k      |                               | 400            | to 600       |       |                | 5,0                                  |  |
| Minimum value of $k = (f_k / f_y)_k$                                                            | ≥1,05  | ≥1,08                         | ≥1,15<br><1,35 | ≥1,05        | ≥1,08 | ≥1,15<br><1,35 | 10,0                                 |  |
| Characteristic strain at maximum force, $\varepsilon_{uk}$ (%)                                  | ≥2,5   | ≥5,0                          | ≥7,5           | ≥2,5         | ≥5,0  | ≥7,5           | 10,0                                 |  |
| Bendability                                                                                     | Bei    | nd/Rebend                     | l test         |              | -     |                |                                      |  |
| Shear strength                                                                                  |        | - 0,3 A f <sub>yk</sub> (A is |                |              |       |                | Minimum                              |  |
| MaximumNominaldeviation frombar size (m)nominal mass $\leq 8$ (individual bar> 8or wire) (%)(%) | m)     | ± 6,0<br>± 4,5                |                |              |       |                | 5,0                                  |  |

Class A is used by default; B and C have more rotation capacity.



22

## Section 3 Materials



- yield strength  ${\it f}_{\rm yk}$  (or the 0,2% proof stress,  ${\it f}_{\rm 0,2k})$
- tensile strength  $f_{tk}$
- adequate ductility is necessary, defined by the  $(f_t/f_y)_k$  and  $\epsilon_{uk}$





## Stress-strain diagrams for design



Assumptions for design:

- (a) inclined top branch with a strain limit of  $\epsilon_{ud}$  and a maximum stress of kf\_yk/\gamma\_s at  $\epsilon_{uk}$
- (b) horizontal top branch without the check of strain limit





## Section 4 Durability and cover to reinforcement

## Section 4 Durability and cover to reinforcement



| Class<br>designation | Description of the environment              | Informative examples w<br>may occur | here exposur   | e classes     |                                                        |                                                  |
|----------------------|---------------------------------------------|-------------------------------------|----------------|---------------|--------------------------------------------------------|--------------------------------------------------|
|                      | corrosion or attack                         | • •                                 |                |               |                                                        |                                                  |
|                      | For concrete without reinforcement or       | 1                                   |                |               |                                                        |                                                  |
| X0                   | embedded metal: all exposures except where  |                                     |                |               | ENITABLE 445                                           |                                                  |
| 7.0                  | there is freeze/thaw, abrasion or chemical  |                                     |                |               | EN ladie 4.1 t                                         | Exposure classes                                 |
|                      | attack                                      |                                     |                |               |                                                        |                                                  |
|                      | For concrete with reinforcement or embedded |                                     |                |               | related to env                                         | ironmental conditions                            |
|                      | metal: very dry                             | Concrete inside buildings           | with your low  | oir burniditu |                                                        |                                                  |
| 2 Corrosion          | induced by carbonation                      | Concrete inside buildings           | with very low  | air numiuity  |                                                        |                                                  |
| XC1                  | Dry or permanently wet                      | Concrete inside buildings           | with low oir h | maiditu       |                                                        |                                                  |
| AC I                 | Dry or permanently wet                      | Concrete permanently sul            |                |               |                                                        |                                                  |
| Vee                  | 147 · · ·                                   |                                     |                |               |                                                        |                                                  |
| XC2                  | Wet, rarely dry                             | Concrete surfaces subject           | t to long-term | water         |                                                        |                                                  |
|                      |                                             | contact                             |                |               |                                                        |                                                  |
|                      |                                             | Many foundations                    |                |               |                                                        |                                                  |
| XC3                  | Moderate humidity                           | Concrete inside buildings           | with moderate  | e or high air |                                                        |                                                  |
|                      |                                             | humidity                            |                |               |                                                        |                                                  |
|                      | o                                           | External concrete sheltere          |                |               |                                                        |                                                  |
| XC4                  | Cyclic wet and dry                          | Concrete surfaces subject           |                | act, not      |                                                        |                                                  |
|                      |                                             | within exposure class XC            | 2              |               |                                                        |                                                  |
|                      | induced by chlorides                        |                                     |                |               |                                                        |                                                  |
| XD1                  | Moderate humidity                           | Concrete surfaces expose            | ed to airborne | chlorides     |                                                        |                                                  |
| XD2                  | Wet, rarely dry                             | Swimming pools                      |                |               |                                                        |                                                  |
|                      |                                             | Concrete components exp             | posed to indus | trial waters  |                                                        |                                                  |
|                      |                                             | containing chlorides                | 5. Freeze/Th   | aw Attack     |                                                        | -                                                |
| XD3                  | Cyclic wet and dry                          | Parts of bridges exposed            | XF1            |               | ater saturation, without de-icing                      | Vertical concrete surfaces exposed to rain and   |
|                      |                                             | chlorides                           | AFT            | agent         | ater saturation, without de-toing                      | freezing                                         |
|                      |                                             | Pavements                           | XF2            |               | ater saturation, with de-icing agent                   | Vertical concrete surfaces of road structures    |
|                      |                                             | Car park slabs                      | AF2            | woderate w    | ater saturation, with de-icing agent                   | exposed to freezing and airborne de-icing agents |
| 4 Corrosion          | induced by chlorides from sea water         |                                     | XF3            | Llink water   | saturation, without de-icing agents                    | Horizontal concrete surfaces exposed to rain and |
| XS1                  | Exposed to airborne salt but not in direct  | Structures near to or on th         | ~F3            | nign water    | saturation, without de-ICINg agents                    | freezing                                         |
|                      | contact with sea water                      |                                     | XF4            | Llink water   | saturation with de-icing agents or                     | Road and bridge decks exposed to de-icing agent  |
| XS2                  | Permanently submerged                       | Parts of marine structures          | AF4            | sea water     | saturation with de-ICIng agents or                     | Concrete surfaces exposed to de-icing agent      |
| XS3                  | Tidal, splash and spray zones               | Parts of marine structures          |                | Sed water     |                                                        | containing de-icing agents and freezing          |
|                      |                                             |                                     |                |               |                                                        | Splash zone of marine structures exposed to      |
|                      |                                             |                                     |                |               |                                                        | freezing                                         |
|                      |                                             |                                     | C. Chamiaal    | atte als      |                                                        | liteezilig                                       |
|                      |                                             |                                     | 6. Chemical    |               | and the second second second second                    | Made and a star and an and a starter             |
|                      |                                             |                                     | XA1            |               | ressive chemical environment<br>o EN 206-1, Table 2    | Natural soils and ground water                   |
|                      |                                             |                                     | XA2            | according to  | aggressive chemical environment<br>o EN 206-1, Table 2 | Natural soils and ground water                   |
|                      |                                             |                                     |                |               |                                                        |                                                  |
|                      |                                             |                                     | XA3            | Highly aggr   | essive chemical environment                            | Natural soils and ground water                   |



(4.1)

28

#### **Concrete cover**

#### **Nominal cover**

 $c_{nom} = c_{min} + \Delta c_{dev}$ 

 $c_{\min}$  minimum cover, in order to ensure:

- the safe transmission of bond forces
- the protection of the steel against corrosion (durability)
- an adequate fire resistance (see EN 1992-1-2)

 $\Delta c_{\text{dev.}}$  allowance in design for deviation

## Section 4 Durability and cover to reinforcement

#### **Concrete cover**

## Minimum cover, c<sub>min</sub>

 $c_{min} = max \{ c_{min,b}; c_{min,dur} + \Delta c_{dur,g} - \Delta c_{dur,st} - \Delta c_{dur,add}; 10 \text{ mm} \}$ (4.2)

where:

 $\begin{array}{l} c_{\text{min,b}} \text{ minimum cover due to bond requirement} \\ c_{\text{min,dur}} \text{ minimum cover due to environmental conditions} \\ \Delta c_{\text{dur,g}} \text{ additive safety element} \\ \Delta c_{\text{dur,st}} \text{ reduction of minimum cover for use of stainless steel} \\ \Delta c_{\text{dur,add}} \text{ reduction of minimum cover for use of additional protection} \end{array}$ 

#### Allowance in design for deviation, $\Delta c_{dev}$

 $\Delta c_{dev} = 10 \text{ mm}$ 

(recommended value)



## Concrete cover in Scia Engineer

| EC-EN                                                           | N   N | lame                        | EC-EN            |
|-----------------------------------------------------------------|-------|-----------------------------|------------------|
| <ul> <li>Concrete</li> <li>Design defaults</li> </ul>           |       | Concrete<br>Design defaults |                  |
| Concrete cover                                                  |       | Concrete cover              |                  |
| - Columns                                                       |       | Use min concrete cover      |                  |
| <ul> <li>Beams</li> <li>2D structures and beam slabs</li> </ul> |       | Design working life [years] | 50               |
| - Punching                                                      |       | Exposure class              | XC3              |
| Default sway type (for columns and bea                          |       | Abrasion class              | None             |
| General                                                         |       | Type of concrete            | In-situ concrete |
| - Concrete                                                      |       | Special quality control     | 🗆 no             |
| Non-proetroecod roinforcoment                                   |       | Columno                     |                  |

| Exposure class          | XC3        |
|-------------------------|------------|
| Abrasion class          | X0         |
| Type of concrete        | XC1        |
| Special quality control | XC2        |
| Columns                 | XC3<br>XC4 |
| Beams                   | XD1        |
| 2D structures and be    | XD2        |
| Punching                | XD3<br>XS1 |
| Default sway type (f    | XS1<br>XS2 |
| General                 | XS3        |

| Abrasion class          | None  |
|-------------------------|-------|
| Type of concrete        | None  |
| Special quality control | XM1   |
| Columns                 | XM2   |
| Paama                   | XIVI3 |



## Section 5 Structural Analysis



#### Structural models for overall analysis

The elements of a structure are classified, by consideration of their nature and function, as **beams**, **columns**, **slabs**, **walls**, **plates**, **arches**, **shells** etc. Rules are provided for the analysis of the commoner of these elements and of structures consisting of combinations of these elements.

See EN § 5.3.1 for the descriptions



32

## Section 5 Structural Analysis

## Assignment of structural models in Scia Engineer

• For 1D members: 3 types (beam, column, beam slab) - choice made by user

| Data Concrete |                         |                  | <u> </u> |
|---------------|-------------------------|------------------|----------|
| * Z           | Name                    | DC1              | ^        |
| nu du         | Member                  | Beam             |          |
| i dan         | Beam type               | beam             | ▼ =      |
| ¢=====        | Advanced mode           | beam             |          |
|               | Minimal concrete cover  | column           |          |
|               | Input for sides         | slab             |          |
|               | Structural class        |                  |          |
| ds 🛛 💙        | Exposure class          | XC3              | -        |
| ns            | Abrasion class          | None             | -        |
| dl            | Situation of Delta;cdev | In-situ concrete | •        |
| +01           | Concrete                | C12/15           |          |
| nl            | Stone diameter [mm]     | 32               | ~        |
| bw            | Actions                 |                  |          |
| T T           | Load default values     |                  | >>>      |
|               | Concrete Setup          |                  | >>>      |
|               |                         | ОК               | Cancel   |

! Different calculation methods !

 For 2D members: 3 types (plate, wall, shell) – detected by NEDIM solver, based on present internal forces





## Assignment of structural models in Scia Engineer



Difference in reinforcement area per direction

Internal forces taken into account:

- Beam calculation: N, M<sub>v</sub>, V<sub>z</sub>
- Column calculation: N, M<sub>v</sub>, M<sub>z</sub>, V<sub>z</sub>





34

#### **Geometric data**

Continuous slabs and beams may generally be analysed on the assumption that the supports provide no rotational restraint.

#### Monolithic connection (Fixed support)

Critical design moment at the support = Moment at the face of the support

#### Hinged support

Design support moment may be reduced by an amount  $\Delta M_{\rm Ed}$ :

$$\Delta M_{\rm Ed} = F_{\rm Ed,sup} t / 8 \tag{5.9}$$

where:  $F_{Ed,sup}$  is the design support reaction *t* is the breadth of the support



## Section 5 Structural Analysis



- Based on the theory of elasticity
- Suitable for both ULS and SLS
- Assumptions:
  - uncracked cross-sections
  - linear stress-strain relationships
  - mean value of E
- For thermal deformation, settlement and shrinkage effects:
  - at ULS: reduced stiffness (cracking tension stiffening + creep)
  - at SLS: gradual evolution of cracking

## Linear elastic analysis in Scia Engineer

Linear calculation

## Section 5 Structural Analysis



38

## 

## Application

For analysis of structural members for the verification of ULS.













### Non-linear analysis in Scia Engineer: Plastic hinges



## Section 5 Structural Analysis



#### General

Imperfections may be represented by an **inclination**  $\theta_i$ :

 $\theta_i = \theta_0 \, \alpha_h \, \alpha_m$ 

where:

(5.1)

 $\theta_0$  is the basic value = 1/200 (recommended value)

 $\alpha_h$  is the reduction factor for length or height

 $\alpha_{\rm m}$  is the reduction factor for number of vertical members contributing to the total effect



## Section 5 Structural Analysis



(5.2)

50

#### **Isolated members**

2 alternative ways to take geometric imperfections into account

(1) As an eccentricity, e<sub>i</sub>, given by

 $e_i = \theta_i I_0 / 2$ 

where I<sub>0</sub> is the effective length

For walls and isolated columns in braced systems,  $e_i = I_0 / 400$  may always be used as a simplification, corresponding to  $\alpha_h = 1$ .

(2) As a **transverse force**,  $H_i$ , in the position that gives the maximum moment:

| - for unbraced members: | $H_{i} = \Theta_{i} N$             | (5.3a) |
|-------------------------|------------------------------------|--------|
| - for braced members:   | $H_{\rm i} = 2  \theta_{\rm i}  N$ | (5.3b) |
|                         |                                    |        |

where N is the axial load

## Section 5 Structural Analysis



#### **Isolated members**

2 alternative ways to take geometric imperfections into account



## Section 5 Structural Analysis



52

Minimum eccentricity for cross-section design

e<sub>0,min</sub> = max { h/30 ; 20 mm }

where h is the depth of the section

see EN § 6.1(4)

This means 
$$\mathbf{e}_0 = \max\left[\left(\mathbf{e}_1 + \mathbf{e}_i\right); \frac{\mathbf{h}}{30}; 20 \text{mm}\right]$$

where:

 $e_1 = 1^{st}$  order eccentricity

 $e_i$  = eccentricity due to geometric imperfections

 $e_0 = e_1 + e_i$ , design eccentricity in a 1<sup>st</sup> order calculation



## Definitions

- *First order effects*: action effects calculated without consideration of the effect of structural deformations, but including geometric imperfections.
- Second order effects: additional action effects caused by structural deformations.

They shall be taken into account where they are likely to affect the overall stability of a structure significantly; e.g. in case of columns, walls, piles, arches and shells.



## Section 5 Structural Analysis



## Criteria for 1<sup>st</sup> or 2<sup>nd</sup> order calculation

2<sup>nd</sup> order effects have to be taken into account in each direction, unless they may be ignored acc. to *one* of the following articles:

(a)  $2^{nd}$  order effects may be ignored if they are less than 10 % of the corresponding  $1^{st}$  order effects.

(b) Simplified criterion = Slenderness criterion for isolated members

2<sup>nd</sup> order effects may be ignored if the slenderness  $\lambda$  <  $\lambda_{\text{lim}}$ 

In case of biaxial bending: the slenderness criterion may be checked separately for each direction





### Methods of analysis - Taking 2<sup>nd</sup> order effects into account

- General method: based on non-linear 2<sup>nd</sup> order analysis
- Two simplified methods: based on linear (nominal 2<sup>nd</sup> order) analysis
  - (a) Method based on nominal stiffness & moment magnification factor
    - $\rightarrow$  Use: both isolated members and whole structures
  - (b) Method based on nominal curvature

 $\rightarrow$  Use: mainly suitable for isolated members, but with realistic assumptions concerning the distribution of curvature, also for structures

 The selection of simplified method (a) and (b) to be used in a Country may be found in its National Annex.

## Section 5 Structural Analysis



58

#### **General method**

#### General method in Scia Engineer

Real (physical and) geometrical non-linear calculation

PGNL analysis for 1D members:

non-linear  $\sigma{-}\epsilon$  diagram, new stiffness EI is calculated iteratively

GNL analysis for 2D members:

no non-linear  $\sigma$ - $\epsilon$  diagram,

but approximation of new stiffness EI by adapting value of E in the material library:

$$EI = K_c E_{cd} I_c + K_s E_s I_s \quad \text{or} \quad E_{cd,eff} = \frac{E_{cd}}{1 + \varphi_{ef}}$$



## **Simplified methods**

(a) Method based on nominal stiffness

**Nominal stiffness** 

$$EI = K_c E_{cd} I_c + K_s E_s I_s \qquad E_{cd,eff} = \frac{E_{cd}}{1 + \varphi_{eff}}$$

## Moment magnification factor

Total moment = 1<sup>st</sup> and 2<sup>nd</sup> order moment

$$\mathsf{M}_{\mathsf{ed}} = \mathsf{M}_{\mathsf{0Ed}} \left[ 1 + \frac{\beta}{(N_B/N_{Ed})^{-1}} \right]$$



60

#### (b) Method based on nominal curvature

#### Application

For isolated members with constant normal force N and a defined effective length  $I_0$ .

The method gives a nominal 2<sup>nd</sup> order moment based on a deflection, which in turn is based on the effective length and an estimated maximum curvature.

## Design moment M<sub>Ed</sub>

 $M_{\rm Ed} = M_{\rm 0Ed} + M_2 \tag{5.31}$ 

where:

 $M_{0\rm Ed}$  is the 1<sup>st</sup> order moment, including the effect of imperfections  $M_2$  is the nominal 2<sup>nd</sup> order moment, based on 1<sup>st</sup> order internal forces









## (b) Method based on nominal curvature in Scia Engineer

Linear calculation

| General<br>Concrete<br>Non-prestressed reinforcement                                                          | Calculation General Columns                                                                                                                                               |                                        |  |  |
|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--|--|
| Prestressed reinforcement     Durability and concrete cover     Calculation     General     Columns     Reams | Corner design only Concerning cross-section beforehand L<br>Buckling data                                                                                                 | ] no<br>] no<br>] no<br>] yes<br>] yes |  |  |
| Taken into account for design:                                                                                |                                                                                                                                                                           |                                        |  |  |
| "Buckling data" OFF:                                                                                          | - 1 <sup>st</sup> order moment                                                                                                                                            |                                        |  |  |
| Ducking data OFT.                                                                                             | - Thorder moment                                                                                                                                                          |                                        |  |  |
| "Buckling data" ON:                                                                                           | ing data" ON: - 1 <sup>st</sup> order moment                                                                                                                              |                                        |  |  |
|                                                                                                               | - moment caused by geometrical                                                                                                                                            | imperfections                          |  |  |
|                                                                                                               | - nominal 2 <sup>nd</sup> order moment, only                                                                                                                              | $\gamma$ if $\lambda > \lambda_{lim}$  |  |  |
|                                                                                                               |                                                                                                                                                                           |                                        |  |  |
|                                                                                                               |                                                                                                                                                                           | 64                                     |  |  |
|                                                                                                               |                                                                                                                                                                           |                                        |  |  |
| Section 5 Structu                                                                                             | ural Analysis                                                                                                                                                             | SCIA<br>A NEMETSCHEK COMPANY           |  |  |
|                                                                                                               | ural Analysis<br>minal curvature in Scia Engineer                                                                                                                         | SCIA<br>A NEMETSCHER COMPANY           |  |  |
|                                                                                                               |                                                                                                                                                                           | SCIA<br>A NEMETSCHER COMPANY           |  |  |
| (b) Method based on no                                                                                        | minal curvature in Scia Engineer<br>(art 5.8.3.1 [1])<br>I < liim<br>no<br>- First order moment<br>- Geometric imperfections<br>- Second order moment **                  | SCIA<br>NEMETSCHEK COMPANY             |  |  |
| (b) Method based on no<br>Overview                                                                            | minal curvature in Scia Engineer<br>(art 5.8.3.1 [1])<br>I < liim<br>no<br>- First order moment<br>- Geometric imperfections                                              | ne nominal                             |  |  |
| (b) Method based on no<br>Overview                                                                            | (art 5.8.3.1 [1])<br>(art 5.8.3.1 [1])<br>I < lim<br>No<br>- First order moment<br>- Geometric imperfections<br>- Second order moment **<br>(nominal curvature 5.8.8 [1]) | ne nominal                             |  |  |



## **Bi-axial bending**

To decide if a bi-axial bending calculation is required or not, the following conditions should be checked: (slenderness ratios & relative eccentricities)



If these conditions are NOT fulfilled  $\rightarrow$  bi-axial bending calculation is required



a is the exponent; for circular and elliptical cross sections: a = 2;

for rectangular cross sections:

| $N_{\rm Ed}/N_{\rm Rd}$ | 0,1 | 0,7 | 1,0 |
|-------------------------|-----|-----|-----|
| a =                     | 1,0 | 1,5 | 2,0 |

with linear interpolation for intermediate values




### **Column calculation in Scia Engineer**





### Application

Section 6 applies to undisturbed regions of beams, slabs and similar types of members for which sections remain approximately plane before and after loading.

If plane sections do not remain plane  $\rightarrow$  see EN § 6.5 (Design with strut and tie models)

### Ultimate moment resistance M<sub>Rd</sub> (or M<sub>u</sub>) of reinforced concrete cross-sections

Assumptions when determining  $M_{Rd}$ :

- plane sections remain plane
- strain in bonded reinforcement = strain in the surrounding concrete
- tensile strength of concrete is ignored
- stresses in concrete in compression  $\rightarrow$  see design  $\sigma$ - $\epsilon$  diagrams (EN § 3.1.7)
- stresses in reinforcing steel  $\rightarrow$  see design  $\sigma$ - $\epsilon$  diagrams (EN § 3.2.7)

70

# Section 6 Ultimate limit states (ULS)



### **Strain limits**

- Reinforcing steel Tensile strain limit =  $\varepsilon_{ud}$  (where applicable)
- Concrete
  - In sections mainly subjected to bending

Compressive strain limit =  $\varepsilon_{cu2}$  (or  $\varepsilon_{cu3}$ )

- In sections subjected to  $\pm$  pure compression ( $\pm$  concentric loading ( $e_d/h < 0,1$ ), e.g. compression flanges of box girders, columns, ...)

Pure compressive strain limit =  $\varepsilon_{c2}$  (or  $\varepsilon_{c3}$ )

For concentrically loaded cross-sections with symmetrical reinforcement, assume as eccentricity  $e_0 = max \left[ (e_1 + e_i); \frac{h}{30}; 20mm \right]$  (M<sub>Ed</sub> is at least =  $e_0 N_{Ed}$ )

where *h* is the depth of the section









### General verification procedure

### Definitions

In members with inclined chords the following additional values are defined:

 $V_{ccd}$  = design value of the shear component of the force in the compression area, in the case of an inclined compression chord

 $V_{td}$  = design value of the shear component of the force in the tensile reinforcement, in the case of an inclined tensile chord

Shear resistance of a member with shear reinforcement:

$$V_{\rm Rd} = V_{\rm Rd,s} + V_{\rm ccd} + V_{\rm td}$$

74

# Section 6 Ultimate limit states (ULS)



 $\exists \downarrow V_{td}$ 

### **General verification procedure**

### Overview

If  $V_{Ed} \le V_{Rd,c}$  No shear reinforcement required (theoretically), but minimum shear reinforcement should be provided for beams:

$$\rho_{w,min} = (0,08 \sqrt{f_{ck}}) / f_{yk}$$
 (recommended value, 9.5N)

If  $V_{Ed} > V_{Rd,c}$  Shear reinforcement should be provided in order that  $V_{Ed} \le V_{Rd}$ 

In practice:  $V_{\text{Rd,s}} = V_{\text{Ed}} - V_{\text{ccd}} - V_{\text{td}}$ 

Check if  $V_{\text{Rd,s}}$  (or  $V_{\text{Ed}}$ )  $\leq V_{\text{Rd,max}}$ 

(If  $V_{Ed} > V_{Rd,max}$ , failure by crushing of concrete compression struts!)



#### Shear force reduction at supports

For members subject to predominantly uniformly distributed loading, the design shear force need not to be checked at a distance less than d from the face of the support. Any shear reinforcement required should continue to the support.











### $V_{Ed} > V_{Rd,c}$ : Members requiring design shear reinforcement



 $b_{\rm w}$  = minimum width between tension and compression chords



 $f_{\rm wwd}$  is the design yield strength of the shear reinforcement

 $\nu_1$  is a strength reduction factor for concrete cracked in shear

 $\alpha_{\mathsf{cw}}$  is a coefficient taking account of the state of the stress in the compression chord

80







bending and shear-tension failure.





### Variable strut inclination method





# Section 6 Ultimate limit states (ULS)



### Variable strut inclination method

Advantages of this method:

Large freedom of design because of the large interval for  $\boldsymbol{\theta}$ 

By making a good choice for the inclination of the struts, optimal design can be achieved:

- Larger angle  $\theta ~~ \rightarrow$  higher value of  $V_{Rd,max}$  (saving on concrete)
- Smaller angle  $\theta \rightarrow$  larger stirrup spacing is sufficient = smaller value of  $A_{sw}$  (saving on steel)



### Variable strut inclination method

General procedure – which can be used in Scia Engineer:

- Assume  $\theta$  = 21,8° ~~ (cot  $\theta$  = 2,5) and calculate  $A_{sw}$ 

- Check if  $V_{Ed} > V_{Rd,max}$ : If NO  $\rightarrow$  OK, end of design

If YES  $\rightarrow$  crushing of the concrete strut

- 3 options if  $V_{\text{Rd,max}}$  is exceeded:
  - increase height of beam
  - choose higher concrete class
  - increase  $\theta,$  or calculate  $\theta$  for which  $V_{Ed}$  =  $V_{Rd,s}$

and repeat the procedure

### Section 6 Ultimate limit states (ULS)



90

### Variable strut inclination method

User input of angle  $\theta$  (or cotangent  $\theta$ ) in Scia Engineer

| Sh  | ear                                                          |           |   |
|-----|--------------------------------------------------------------|-----------|---|
| 1   | D structures                                                 |           |   |
| 3 ( | Shear coefficients                                           |           |   |
| [   | Distance with full resistance from outside stirrup (multiple | 0,50      |   |
| ⊒(⁄ | Angle between the concrete compression strut a               | )         |   |
| [   | Type of input theta                                          | Angle     | ~ |
|     | Web                                                          | Angle     |   |
|     | theta [deg]                                                  | Cotangent |   |
|     | cot (theta)                                                  | 1,192     |   |
| Ξ   | Compression flange                                           |           |   |
|     | theta [deg]                                                  | 40.00     |   |
|     | cot (theta)                                                  | 1,192     |   |
|     | Tension flange                                               |           |   |
|     | theta [deg]                                                  | 40.00     |   |
|     | cot (theta)                                                  | 1,192     |   |



### Additional tensile force in the longitudinal reinforcement ... caused by shear

#### 2 approaches

(1) EN Section 6:

 $\rightarrow$  For members <u>with</u> shear reinforcement

Calculation of the **additional tensile force**,  $\Delta F_{td}$ , in the longitudinal reinforcement due to shear  $V_{Ed}$ :

 $\Delta F_{\rm td} = 0.5 \ V_{\rm Ed} \ (\cot\theta - \cot\alpha) \tag{6.18}$ 

 $(M_{\rm Ed}/z) + \Delta F_{\rm td} \leq M_{\rm Ed,max}/z$ , where  $M_{\rm Ed,max}$  is the maximum moment along the beam

| Section | 6 | Ultimate | limit | states | (ULS) |
|---------|---|----------|-------|--------|-------|
| oconon  | • | Ontinuto |       | States |       |



92

#### Additional tensile force in the longitudinal reinforcement ... caused by shear

(2) EN Section 9:

 $\rightarrow$  For members without shear reinforcement

 $\Delta F_{td}$  may be estimated by **shifting the moment curve** (in the region cracked in flexure) a distance  $a_{l} = d$  in the unfavourable direction.

 $\rightarrow$  For members with shear reinforcement

This "shift rule" may also be used as an alternative to approach (1), where:

 $a_{\rm l} = z \left(\cot\theta - \cot\alpha\right) / 2 \tag{9.2}$ 















### General

The torsional resistance of a section may be calculated on the basis of a **thin-walled closed section**, in which equilibrium is satisfied by a closed shear flow.

- Solid section  $\rightarrow$  equivalent thin-walled section
- Complex shape (e.g. T-sections) → series of equivalent thin-walled section, where the total torsional resistance = sum of the capacities of the individual elements
- Non-solid sections → equivalent wall thickness ≤ actual wall thickness





 $A_{\rm k}$  is the area enclosed by the centre-lines of the connecting walls, including inner hollow areas

 $t_{\rm ef,i}$  is the effective wall thickness, which may be taken as A/u

*A* is the total area of the cross-section within the outer circumference, including inner hollow areas

u is the outer circumference of the cross-section

z is the side length of wall i



A - centre-line

B - outer edge of effective crosssection, circumference *u*,

C - cover

# Section 6 Ultimate limit states (ULS)



100

Longitudinal reinforcement for torsion  $\Sigma A_{sl}$ 

$$\Sigma A_{sl} = (T_{Ed} \cot \theta u_k) / (2 A_k f_{yd})$$

(6.28)

where:

 $u_{\rm k}$  is the perimeter of the area  $A_{\rm k}$ 

 $f_{\rm yd}$  is the design yield stress of the longitudinal reinforcement  $A_{\rm sl}$  $\theta$  is the angle of compression struts

| In compressive chords: | The longitudinal reinf. may be reduced in proportion to the available compressive force.                          |
|------------------------|-------------------------------------------------------------------------------------------------------------------|
| In tensile chords:     | The longitudinal reinf. for torsion should be added to the other reinforcement. It should be distributed over the |
|                        | length of side, $z_i$ , but for smaller sections it may be                                                        |
|                        | concentrated at the ends of this length.                                                                          |



### Transverse reinforcement for torsion (and shear)

The effects of torsion (T) and shear (S) may be superimposed, assuming the same value for the strut inclination  $\theta$ . Limits for  $\theta$  are given in (6.7N).

This means  $V_{Ed} = V_{Ed} (S) + V_{Ed} (T)$ 

where:  $V_{Ed}(T) = \Sigma V_{Ed,i}$  (6.26) - (6.27)

For each wall i:  $V_{Ed,i} = \tau_{t,i} t_{ef,i} z_i = (T_{Ed} z_i) / (2 A_k)$  (6.26) - (6.27)

In practice:  $V_{Ed} = V_{Rd,s} = (A_{sw}/s) z f_{ywd} \cot \theta$ 



102

(6.8)

### Section 6 Ultimate limit states (ULS)

Specific conditions to be checked: Shear – Torsion interaction diagrams

1<sup>st</sup> Condition

In order not to exceed the bearing capacity of the concrete struts for a member subjected to torsion and shear, the following condition should be satisfied:

$$(T_{Ed} / T_{Rd,max}) + (V_{Ed} / V_{Rd,max}) \le 1$$
 (6.29)  
where:

 $T_{\rm Ed}$  is the design torsional moment &  $V_{\rm Ed}$  is the design transverse force  $T_{\rm Rd.max}$  is the design torsional resistance moment

$$T_{\text{Rd,max}} = 2 \nu \alpha_{\text{cw}} f_{\text{cd}} A_k t_{\text{ef,i}} \sin \theta \cos \theta$$
 (6.30)  
where  $\nu$  follows from (6.6N) and  $\alpha_{\text{cw}}$  from (6.9)

 $V_{\rm Rd,max}$  is the maximum design shear resistance according to (6.9) or (6.14). In solid cross-sections the full width of the web may be used to determine  $V_{\rm Rd,max}$ .





### Specific conditions to be checked: Shear – Torsion interaction diagrams

2<sup>nd</sup> Condition

For approximately rectangular solid sections, only minimum reinforcement is required if the following condition is satisfied:

 $(T_{Ed} / T_{Rd,c}) + (V_{Ed} / V_{Rd,c}) \le 1$  (6.31) where :

> $T_{Rd,c}$  is the torsional cracking moment, which may be determined by setting  $\tau_{t,i} = f_{ctd}$  $V_{Rd,c}$  follows from (6.2)

Minimum transverse reinforcement  $\rightarrow$  see  $\rho_{w,min}$  (9.5N)

### Section 6 Ultimate limit states (ULS)



### **Torsion in Scia Engineer**

Not taken into account by default !

| Calculation                                                 |                             |
|-------------------------------------------------------------|-----------------------------|
| General                                                     |                             |
| Number of iteration steps                                   | 100                         |
| Precision of iteration [%]                                  | 1                           |
| Limit value for checks [-]                                  | 1,00                        |
| User defined and end sections only                          | 🗆 no                        |
| Concrete area weakened by reinforcement bars                | 🗆 no                        |
| Concrete area weakened by prestressed reinforcement         | 🗆 no                        |
| For design calculations of 1D members, consider longitud    | ⊠ yes                       |
| Check torsion                                               | ⊠ yes                       |
| Check shear of construction joint                           | 🗆 no                        |
| Calculation of additional force caused by shear and torsion | Method according to 9.2.1.3 |

! Torsion reinforcement is only calculated for the walls *i*// local z axis of the beam !

For A<sub>si</sub>: all of the required reinf. is distributed over the walls *i* // local z axis

For  $A_{sw}$ : only the required reinf. for  $V_z(T)$  is caluculated, not the one for  $V_v(T)$ 



### General

- Punching = 'extension' of the shear principles
- Punching shear results from a concentrated load or reaction, acting on a small area
   A<sub>load</sub> (the loaded area of a slab or a foundation)
- Verification model for checking punching failure at the ULS, based on control perimeters where checks will be performed.





### Basic control perimeter u<sub>1</sub>

Normally taken at a distance 2*d* from the loaded area:



The effective depth d<sub>eff</sub> of the slab is assumed constant:

 $d_{eff} = (d_v + d_z) / 2$ 

(6.32)

where  $d_v$  and  $d_z$  are the effective depths of the reinf. in 2 orthogonal directions

In case the concentrated force is opposed by a high pressure (e.g. soil pressure on a column base), control perimeters at a distance less than 2*d* should be considered.



considered ineffective.



### Basic control perimeter u<sub>1</sub>

In case of a loaded area near an edge or corner:



If the distance to the edge or corner is smaller than d, special edge reinforcement should always be provided, see EN § 9.3.1.4.

### Further perimeters *u*<sub>i</sub>

Further perimeters  $u_i$  should have the same shape as the basic control perimeter  $u_i$ .

# Section 6 Ultimate limit states (ULS)



### **Design procedure**

Based on checks at the face of the column and at the basic control perimeter  $u_1$ .

If shear reinforcement is required, a further perimeter  $u_{\text{out,ef}}$  should be found where shear reinforcement is no longer required.

### Definition of design shear resistances [MPa]

- v<sub>Rd,c</sub> = design value of the punching shear resistance of a slab *without* punching shear reinforcement along the control section considered
- v<sub>Rd,cs</sub> = design value of the punching shear resistance of a slab *with* punching shear reinforcement along the control section considered
- v<sub>Rd,max</sub> = design value of the *maximum* punching shear resistance along the control section considered



### **Design procedure**

### Checks to be performed

- Check at the face of the column, or at the perimeter of the loaded area (perimeter u<sub>0</sub>):

 $v_{Ed0} \leq v_{Rd,max}$ 

with  $v_{Ed0}$  the design shear stress at the column perimeter  $u_0$ 

- Check at the basic control perimeter u1:

If  $v_{Ed} \leq v_{Rd,c}$ : Punching shear reinforcement is not required

If  $v_{Ed} > v_{Rd,c}$ : Punching shear reinforcement has to be provided acc. to (6.52)

with  $v_{Ed}$  the design shear stress at the basic control perimeter  $u_1$ 





### Design procedure

**Remark:** In case of a foundation slab, the punching shear force  $V_{Ed}$  may be reduced due to the favourable action of the soil pressure.

 $V_{\rm Ed,red} = V_{\rm Ed} - \Delta V_{\rm Ed}$  (for concentric loading) (6.48) where:

nere:

 $V_{\rm Ed}$  is the applied shear force  $\Delta V_{\rm Ed}$  is the net upward force within the control perimeter considered,

i.e. upward pressure from soil minus self weight of base

 $v_{\rm Ed} = V_{\rm Ed, red} / u d \tag{6.49}$ 

Remember: Consider control perimeters within 2d from the periphery of the column.

















# Section 7 Serviceability limit states (SLS)



### Common serviceability limit states

- Stress limitation
- Crack control
- Deflection control

Other limit states, like vibration, are not covered in this Standard.

















### **Limitation of cracking**

under the quasi-permanent combination of loads

... to guarantee the proper functioning and durability of the structure, and acceptable appearance

- Cracking is normal in reinforced concrete structures!
- Cracks may be permitted to form without any attempt to control their width, provided that they do not impair the functioning of the structure.

126

# Section 7 Serviceability limit states (SLS)



### Max. crack width w<sub>max</sub>

| W <sub>max</sub> =                                                                                                                                                                                                                                                                                                                                                                      | (recommended values, EN Table 7.1N)                                 |                                              |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------|--|--|--|
| Exposure<br>Class                                                                                                                                                                                                                                                                                                                                                                       | Reinforced members and prestressed<br>members with unbonded tendons | d Prestressed members with<br>bonded tendons |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                         | Quasi-permanent load combination                                    | Frequent load combination                    |  |  |  |
| X0, XC1                                                                                                                                                                                                                                                                                                                                                                                 | 0,41                                                                | 0,2                                          |  |  |  |
| XC2, XC3, XC4                                                                                                                                                                                                                                                                                                                                                                           |                                                                     | 0,2 <sup>2</sup>                             |  |  |  |
| XD1, XD2, XS1,<br>XS2, XS3                                                                                                                                                                                                                                                                                                                                                              | 0,3                                                                 | Decompression                                |  |  |  |
| <ul> <li>Note 1: For X0, XC1 exposure classes, crack width has no influence on durability and this limit<br/>is set to guarantee acceptable appearance. In the absence of appearance conditions<br/>this limit may be relaxed.</li> <li>Note 2: For these exposure classes, in addition, decompression should be checked under the<br/>quasi-permanent combination of loads.</li> </ul> |                                                                     |                                              |  |  |  |

... taking into account the proposed function and nature of the structure and the costs of limiting cracking



### Minimum reinforcement areas

- A minimum amount of bonded reinforcement is required to control cracking in areas where tension is expected.
- The amount may be estimated from equilibrium between the tensile force in concrete just before cracking and the tensile force in reinforcement at yielding.

(or at a lower stress if necessary to limit the crack width)

### Section 7 Serviceability limit states (SLS)



Min. reinforcement area  $A_{s,min}$  (within the tensile zone)

$$A_{\rm s,min} = (k_{\rm c} \ k \ f_{\rm ct,eff} \ A_{\rm ct}) \ / \ \sigma_{\rm s}$$

(7.1)

where:

 $A_{\rm ct}$  is the area of concrete within the tensile zone, just before the formation of the first crack

 $\sigma_s$  is the maximum stress permitted in the reinforcement immediately after formation of the crack:  $\sigma_s = f_{yk}$ , unless a lower value is needed to satisfy the crack width limits according to the maximum bar size or spacing (see further)

 $f_{\text{ct,eff}} = f_{\text{ctm}} \text{ or } (f_{\text{ctm}}(t)) \text{ if cracking is expected earlier than 28 days}$ 

k = 1,0 for webs with  $h \le 300$  mm or flanges with widths  $\le 300$  mm

= 0,65 for webs with  $h \le 800$  mm or flanges with widths > 800 mm

 $k_{\rm c}$  is a coefficient which takes account of the stress distribution within the section immediately prior to cracking and of the change of the lever arm



- The values in the tables are based on the following assumptions: c = 25mm;  $f_{ct,eff}$  = 2,9MPa;  $h_{cr}$  = 0,5; (h-d) = 0,1h;  $k_1$  = 0,8;  $k_2$  = 0,5;  $k_c$  = 0,4; k = 1,0;  $k_t$  = 0,4 and k' = 1,0



### Control of cracking without direct calculation

| Steel stress <sup>2</sup> | Maximum bar size [mm]   |                         |                         |
|---------------------------|-------------------------|-------------------------|-------------------------|
| [MPa]                     | w <sub>k</sub> = 0,4 mm | w <sub>k</sub> = 0,3 mm | w <sub>k</sub> = 0,2 mm |
| 160                       | 40                      | 32                      | 25                      |
| 200                       | 32                      | 25                      | 16                      |
| 240                       | 20                      | 16                      | 12                      |
| 280                       | 16                      | 12                      | 8                       |
| 320                       | 12                      | 10                      | 6                       |
| 360                       | 10                      | 8                       | 5                       |
| 400                       | 8                       | 6                       | 4                       |
| 450                       | 6                       | 5                       | -                       |

EN Table 7.2N Maximum bar diameters  $\phi_s^*$  for crack control

| Steel stress <sup>2</sup> | Maximum bar spacing [mm] |                        |                        | EN Table 7.3N       |
|---------------------------|--------------------------|------------------------|------------------------|---------------------|
| [MPa]                     | w <sub>k</sub> =0,4 mm   | w <sub>k</sub> =0,3 mm | w <sub>k</sub> =0,2 mm |                     |
| 160                       | 300                      | 300                    | 200                    | Maximum bar spacing |
| 200                       | 300                      | 250                    | 150                    | for crack control   |
| 240                       | 250                      | 200                    | 100                    |                     |
| 280                       | 200                      | 150                    | 50                     |                     |
| 320                       | 150                      | 100                    | -                      |                     |
| 360                       | 100                      | 50                     | -                      |                     |

132

### Section 7 Serviceability limit states (SLS)



### Calculation of crack widths w<sub>k</sub>

$$w_k = s_{r,max} (\varepsilon_{sm} - \varepsilon_{cm})$$

where

 $\boldsymbol{s}_{r,max}$  is the maximum crack spacing

 $\epsilon_{sm}$  is the mean strain in the reinforcement under the relevant combination of loads, including the effect of imposed deformations and taking into account the effects of tension stiffening.

 $\epsilon_{\rm cm}$  is the mean strain in the concrete between cracks

For the formulas for  $(\epsilon_{sm}-\epsilon_{cm})$  and  $s_{r,max}$  , see EN § 7.3.4

(7.8)

# Section 7 Serviceability limit states (SLS)










#### Checking deflections by calculation

Taking account of creep

For loads with a duration causing creep, the total deformation including creep may be calculated by using an effective modulus of elasticity for concrete:

$$E_{c,eff} = E_{cm} / [1 + \phi(\infty, t_0)]$$
(7.20)

where:

 $\phi(\infty,t_0)$  is the creep coefficient



## Section 7 Serviceability limit states (SLS)



#### **Checking deflections by calculation**

Most rigorous method of assessing deflections:

Compute the **curvatures** at frequent sections along the member

& calculate the deflection by numerical integration

Do this twice,

| 1 <sup>st</sup> time: assuming the whole member to be uncracked                     | (Condition I)  |
|-------------------------------------------------------------------------------------|----------------|
| 2 <sup>nd</sup> time: assuming the member to be fully cracked                       | (Condition II) |
| then <b>interpolate</b> using $\alpha = \zeta \alpha_{II} + (1 - \zeta) \alpha_{I}$ |                |









→ distribution coefficient ζ

$$\left(\mathrm{EI}\right)_{\mathrm{r}} = \frac{1}{\frac{\zeta}{\left(\mathrm{EI}\right)_{\mathrm{II}}} + \frac{1-\zeta}{\left(\mathrm{EI}\right)_{\mathrm{I}}}}$$







## Section 8 Detailing of reinforcement - General

## Section 8 Detailing of reinforcement - General



#### Min. bar spacing s<sub>min</sub>

The minimum clear distance (horizontal and vertical) between parallel bars should be

 $s_{\min} = \max \{ k_1 \cdot \phi ; (d_g + k_2 \text{ mm}) ; 20 \text{ mm} \}$ where:

 $d_{g}$  is the maximum aggregate size  $k_{1} = 1 \text{ mm}$ 

k<sub>2</sub> = 5 mm

(recommended value) (recommended value)

... such that the concrete can be placed and compacted satisfactorily (by vibrators) for the development of adequate bond



longitudinal cracking or spalling





(8.2)

153

#### Ultimate bond stress

Design value of ultimate bond stress f<sub>bd</sub>

 $f_{\rm bd} = 2,25 \ \eta_1 \ \eta_2 \ f_{\rm ctd}$ 

where:

 $f_{\rm ctd}$  is the design value of concrete tensile strength

 $\eta_1$  is a coefficient related to the quality of the bond condition and the position of the bar during concreting:

 $\begin{aligned} \eta_1 &= 1,0 \quad (\text{`good' conditions}) \\ \eta_1 &= 0,7 \quad (\text{all other cases}) \\ \eta_2 \text{ is related to the bar diameter:} \\ \eta_2 &= 1,0 \qquad \text{for } \phi \leq 32 \text{ mm} \end{aligned}$ 







(8.3)

#### **Basic anchorage length**

Basic required anchorage length Ib,rqd

$$I_{\rm b,rgd} = (\phi / 4) \cdot (\sigma_{\rm sd} / f_{\rm bd})$$

... for anchoring the force  $A_{s} \cdot \sigma_{sd}$  in a straight bar, assuming constant bond stress  $f_{bd}$  and where  $\sigma_{sd}$  is the design stress of the bar at the position from where the anchorage is measured from







#### **Specifications**

- unless stated otherwise, same rules as for individual bars apply

- all the bars in a bundle should have the same characteristics (type and grade) & similar sizes: max. ratio of diameters = 1,7

- in design, the bundle is replaced by a **notional bar** having the same sectional area and the same centre of gravity as the bundle + an equivalent diameter

#### Equivalent diameter $\phi_n$

 $\phi_n = \phi \sqrt{n_b} \le 55 \text{ mm}$ where

 $n_{\rm b}$  is the number of bars in the bundle,

 $n_{\rm b} \leq 4$  (for vertical bars in compression & bars in a lapped joint)

 $n_{\rm b} \leq 3$  (for all other cases)

158

(8.14)



## Section 9 Detailing of members & particular rules









The longitudinal bars have to be distributed uniformly, with max. spacing of 350 mm.



#### **Flexural reinforcement**

Min. & max. reinforcement areas  $A_{s,min}$  &  $A_{s,max}$ Same requirements as for beams (see EN § 9.2)

## Max. spacing s<sub>max,slabs</sub>

s<sub>max,slabs</sub> =

(recommended values)

- for the principal reinforcement:  $3h \leq 400 \text{ mm}$ 

- for the secondary reinforcement:  $3,5h \leq 450 \text{ mm}$ 

where *h* is the total depth of the slab

In areas with concentrated loads or areas of maximum moment:

- for the principal reinforcement:  $2h \leq 250 \text{ mm}$ 

- for the secondary reinforcement:  $3h \leq 400 \text{ mm}$ 

# Section 9 Detailing of members & particular rules



#### **Flexural reinforcement**

#### Curtailment of longitudinal tension reinforcement

Same requirements as for beams (EN § 9.2):

- calculate additional tensile force,  $\Delta F_{td}$  , or
- estimate  $\Delta F_{td}$  by shifting the moment curve a distance  $a_l = d$

#### One way slabs

Minimum secondary transverse reinforcement = 20% of the principal reinforcement



## Shear reinforcement Min. slab thickness Minimum depth for a slab in which shear reinforcement is provided = 200 mm Min. shear reinforcement ratio Same requirements as for beams (see EN § 9.2) Max. longitudinal spacing $s_{l.max} = 0,75 d (1 + \cot \alpha)$ (9.9)Max. transverse spacing $s_{t,max} = 1,5 d$ 166 Section 9 Detailing of members & particular rules Punching shear reinforcement Where punching shear reinforcement is required: Min. area of a link leg (or equivalent) A<sub>sw.min</sub> $A_{sw,min} = [0,08 \sqrt{(f_{ck})} \cdot (s_r \cdot s_t)] / [f_{vk} \cdot (1,5 \sin \alpha + \cos \alpha)]$ (9.11)where : $\alpha$ is the angle between the shear reinforcement and the main steel s<sub>r</sub> is the spacing of shear links in the radial direction $s_{t}$ is the spacing of shear links in the tangential direction Min. number of perimeters of link legs

= 2



#### Punching shear reinforcement

Distance between the face of the support and the first link leg perimeter

 $\geq$  0,3 d and  $\leq$  0,5 d

Max. radial spacing of the link leg perimeters s,

 $s_r \le 0,75 \text{ d}$ 

perimeter at which shear force reinforcement is no longer required: u<sub>out</sub> Max. tangential spacing around a perimeter s,  $s_t \leq 1,5 d$  (within  $u_1$ )  $\geq 0,3 d$  $\leq 1,5 d$  within  $u_1$  $s_t \le 2 d$  (between  $u_1 \& u_{out}$ )  $\leq 0.5 d$  $\leq 2 \ d$  between  $u_1 \& u_{out}$  $\underline{s_r} \le 0.75 d$ 



### Section 9 Detailing of members & particular rules



#### Longitudinal reinforcement

#### Min. number of bars

At least one bar at each corner / Min. 4 bars for circular cross-sections

### Min. diameter $\phi_{l,min}$

 $\phi_{l.min} = 8 \text{ mm}$ 

(recommended value)

#### Min. reinforcement area A<sub>s.min</sub>

 $\mathsf{A}_{\mathsf{s},\mathsf{min}} = \mathsf{max} \; \{ \; \mathsf{0}, \mathsf{10} \; \mathsf{N}_{\mathsf{Ed}} \; / \; \mathsf{f}_{\mathsf{yd}} \; ; \; \mathsf{0}, \mathsf{002} \; \mathsf{A}_{\mathsf{c}} \; \}$ where:

(recommended value, 9.12N)

N<sub>Ed</sub> is the design axial compression force

#### Max. reinforcement area A<sub>s.max</sub>

 $A_{s.max} = 0.04 A_c$  (outside lap locations) (recommended value)  $A_{s,max} = 0.08 A_c$  (at lap locations)



#### **Transverse reinforcement**

#### Min. diameter $\phi_{t,min}$

 $\phi_{t,min} = max \{ 6 mm ; 0,25 \phi_{l,max applied} \}$ 

### Max. spacing along the column $s_{cl,tmax}$

 $s_{cl,tmax} \quad (outside lapped joints) \qquad (recommended value) \\ = min \{ 20 \ \phi_{l,min \ applied}; the lesser column dimension ; 400 mm \}$ 

- $s_{cl,tmax}$  (near lapped joints if  $\phi_{l,max applied} > 14mm$ & in the vicinity of a beam or slab)
- = 0,6  $\cdot$  min { 20  $\phi_{l,min \text{ applied}}$  ; the lesser column dimension ; 400 mm }

# Section 9 Detailing of members & particular rules



- The reinforcement design for walls may be derived from a strut-and-tie model.
- For walls subjected predominantly to out-of-plane bending the rules for slabs apply.

#### Vertical reinforcement

| Min. reinforcement area A <sub>s,vmin</sub>                                                   |                     |
|-----------------------------------------------------------------------------------------------|---------------------|
| $A_{s,vmin} = 0,002 A_c$                                                                      | (recommended value) |
| Max. reinforcemente area A <sub>s,vmax</sub>                                                  |                     |
| $A_{s,vmax} = 0,04 A_c$ (outside lap locations)<br>$A_{s,vmax} = 0,08 A_c$ (at lap locations) | (recommended value) |
| Max. bar spacing s <sub>vmax</sub>                                                            |                     |
| $s_{vmax} = min \{ 3 \cdot wall thickness ; 400 mm \}$                                        |                     |



#### **Horizontal reinforcement**

To be provided at each surface

Min. reinforcement area A<sub>s,hmin</sub>

 $A_{s,hmin} = max \{ 0,25 A_{s,v applied} ; 0,001 A_c \}$ 

(recommended value)

Max. bar spacing  $s_{hmax}$ 

 $s_{hmax} = 400 \text{ mm}$ 

#### Transverse reinforcement

for columns (see EN § 9.5).

If  $A_{s,v \text{ applied}}$  (total area in the two faces) > 0,02  $A_c$ then transverse reinforcement should be provided in accordance with the requirements

172

## References



- Technical Committee CEN/TC250, Eurocode 2: Design of concrete structures Part 1-1: General rules and rules for buildings, (2004).
- Technical Committee CEN/TC250, Corrigendum to Eurocode 2: Design of concrete structures - Part 1-1: General rules and rules for buildings, (2008).
- Braam, C.R., Lagendijk, P., Constructieleer Gewapend Beton, (2008), Cement&BetonCentrum 's-Hertogenbosch.
- Workshop Concrete acc. to EC-EN Advanced training Scia Engineer.