

Základní školení SCIA Engineer 15 All information in this document is subject to modification without prior notice. No part of this manual may be reproduced, stored in a database or retrieval system or published, in any form or in any way, electronically, mechanically, by print, photo print, microfilm or any other means without prior written permission from the publisher. SCIA is not responsible for any direct or indirect damage because of imperfections in the documentation and/or the software.

© Copyright 2015 SCIA nv. All rights reserved.

Obsah

Představení programu SCIA Engineer	2
Typy projektů	2
Cíl školení	2
Podpora zákazníkům	3
Online podpora	3
Skolení a konzultace	
Uzivatelske prostredi (GUI)	4
Grafické 3D Okno	4
Hlavní strom	
Filtry a Akchi tiacitka	55 ۵
Prikazovy radek	
Nástrojové panely	
Náhledové Okno	7
Založení nového projektu	9
Typ projektu	9
Data o projektu	9
Prutove konstrukce	10
Příklad – Rámová konstrukce	10
Založení nového projektu	10
Zadaní průřezů	10
Konstrukce \rightarrow Sloup	10
Zadaní nosníku	12
Klouby	13
Podpory	
Kontrola geometrických dat	
Propojit prvky / uzly	15
Nastavení zobrazení konstrukce v 3D okně	17
Nastavení pohledu	
Nastavení Parametrů zobrazení	17
Zadání výpočtových dat	19
Zatěžovací stavy a skupiny	19
Zatížení	
Kombinace	
уросет	
Lineární výpočet	
vysieaky	24
Vyhodnocování výsledků	24
Dokument	24

Představení programu SCIA Engineer

SCIA je zkratka z anglických slov Scientific Applications, termínu, který zdůrazňuje vědeckotechnické zázemí firmy. Od svého založení roku 1974, je SCIA softwarovou společností s vedením v Belgii, která vyvíjí, prodává a podporuje softwarové produkty pro stavebnictví. Typickými oblastmi použití SCIA software jsou projekty budov, mostů, hal a podobných rozsáhlých a inženýrsky náročných konstrukcí.

SCIA má mezinárodní síť poboček a distribučních partnerů v 16 zemích. Její produkty byly přeložené a jsou neustále překládané do 10 různých jazyků, prodalo se více jak 8000 licencí, více než 5000 klientům v 50 zemích.

Inženýrský software SCIA Engineer vznikl postupnou evolucí, základ má hlavně v programech NEXIS32 a FEAT2000. V roce 2008 byl přejmenovaný z původního názvu SCIA ESA PT, princip programu však zůstává stejný.

Typy projektů

- Pozemní stavby: obytné budovy, výškové budovy, kanceláře, střešní systémy, závěsné panely, skleněné konstrukce, zimní zahrady, ...
- Infrastruktura: mosty, tunely, nádraží, letiště, metro, výkopy, parkoviště, stadiony, multikina ...
- Průmyslové stavby : portálové rámy, sklady, dílny ...
- Strojírenství: tlakové nádoby, potrubí, nosné konstrukce, ...
- Životní prostředí: čističky odpadních vod, usazovací nádrže, zásobníky
- Přístavní konstrukce: přístaviště, vrata zdymadel, uzávěry, …
- Prefabrikované betonové konstrukce: stropní panely, desky, stěny, vazníky a sloupy, ...
- Zvláštní konstrukce: přepravníky, průmyslové závody, stožáry, lešení, schodiště...

Cíl školení

Cílem tohoto školení je seznámit nové uživatele programu **SCIA Engineer** s jeho ovládáním. Formou jednoduchých příkladů doprovázených výkladem se uživatel seznámí s uživatelským prostředím programu a způsobem jak v programu zadat běžné stavební konstrukce.

Obsahem je obeznámení uživatele s možnostmi modelovaní (1D prvky, 2D prvky, tuhá ramena, klouby aj.) a lineárního výpočtu (zatížení, kombinace, nastavení MKP sítě, generovaní sítě). Následně bude uživatel seznámený se základnými principy vyhodnocování a zpracování výsledků.

Školení je normově nezávislé a jeho obsahem nejsou žádné typy normových posudků (beton, ocel), které jsou probírány na následných specializovaných školeních.

Obsahem školení by nemělo být přímé porovnávání s předchůdcemi současného software (NEXIS32, FEAT) ani předchozími verzemi SCIA Engineer, je však možné v závislosti na konkrétních vědomostech školitele uvést zásadní rozdíly.

Podpora zákazníkům

Online podpora

SCIA disponuje spolehlivou dvojitou úrovní systému poprodejních služeb. V případě, že naši pracovníci přímého kontaktu se zákazníky nebudou schopní uspokojivě odpovědět na Vaše otázky, přesunou Váš problém na vyšší úroveň, kde ho vyřeší úzce specializovaní odborníci. Servisní tým společnosti SCIA je tu pro Vás každý pracovní den od 8.00h do 12.00h a od 12.30h do 16.00h. Kromě technického poradenství souvisejícího s používáním software zabezpečujeme uspokojení jakýchkoliv jiných nepředvídaných potřeb nebo konkrétních požadavků na objasnění problému.

Pokud pracovníci přímého kontaktu našeho podpůrného týmu uznají, že nejsou plně schopní uspokojivě odpovědět na Vaše otázky, přepošlou dále Vaši žádost o pomoc anebo příslušné informace zodpovědným produktovým inženýrům. Tito zaměstnanci mají přeci jen více podrobné vědomosti.

Pokud máte naléhavý problém, pošlete nám jeho popis prostřednictvím e-mailu na adresu

support@SCIA-online.com.

Vaše správa bude okamžitě zaznamenána a obdržíte kódové pořadové číslo.

Nezapomeňte k e-mailu připojit Váš projekt ve formátu *.esa. Tak bude Vaše zpráva zpracovaná rychle a efektivně. Technické oddělení bude moci rychle analyzovat Vaši otázku ohledně projektu, vypracovat odpověď a zpětně Vás kontaktovat s cílem vyřešit Váš problém.

Školení a konzultace

Školení SCIA jsou organizované během celého roku, hromadná školení probíhají na jaře a na podzim. Školení jsou organizovaná tak, aby každý účastník získal praktické zkušenosti s ovládáním programu. Na základě našich zkušeností jsme rozdělili školení na dvě kategorie (začátečníci a pokročilí). Cílem školení je zvýšit Vaši zručnost, rychlost a tím maximalizovat produktivitu Vaší práce.

SCIA nabízí 3 druhy školení:

Hromadné školení:

v kancelářích SCIA nebo školících místnostech v městech Praha, Brno, Bratislava a Košice; cena standardní za jednu osobu; předefinovaný školící program Individuální školení:

školení po dohodě v místě uživatele; cena a výukový materiál na školení dohodou Online školení:

prostřednictvím internetu; hodinová cena

Uživatelské prostředí (GUI)

Všeobecně používaná zkratka GUI (Graphic User Interface) označuje soubor prvků, pomocí kterých uživatel s programem komunikuje. SCIA Engineer obsahuje několik základných častí uživatelského rozhraní, které je nutné správně rozlišovat pro pohodlnou a efektivní práci s programem. Jejich detailní popis je uvedený v Základním manuálu. Rozložení, vzhled či samotná přítomnost oken závisí na rozhodnutí samotného uživatele.

Grafické 3D Okno

Model definovaný uživatelem se vykresluje v grafickém okně. Všechny výběry jakékoliv funkce jsou uskutečňované právě v tomto okně, včetně analyzování a zobrazovaní výsledků výpočtu.

Grafické okno tedy zobrazuje data projektu, ale také přijímá informace od uživatele. Současně je možné otevřít a používat libovolný počet grafických oken. Každé okno přitom může pracovat s jiným projektem nebo všechna okna mohou zobrazovat data stejného projektu.

Nastavení zobrazovaní konkrétních entit pro dané okno se řídí parametry zobrazení.

Hlavní strom

Hlavní strom slouží na navigaci mezi jednotlivými částmi programu (konstrukce, výpočet, výsledky, dimenzační moduly...). Jednotlivé položky stromu se často nazývají jednotným pojmenováním "servis" (Servis výsledky, Servis beton atd.). Jednotlivé kapitoly hlavního stromu jsou řazeny tak, jak by měl uživatel postupovat během práce s projektem.

Okno vlastností

Okno vlastností slučuje parametry, charakteristiky a vybrané vlastnosti určitých entit jako jsou uzly, pruty, zatížení, výsledky apod.

Okno vlastností vždy ukazuje informace, které se vztahují k vybraným entitám. Okno vlastností neslouží jen na zobrazovaní informací, ale též na rychlou a jednoduchou editaci vybraných entit. Když je ve výběru vložená jen jedna entita, je možné její parametry volně opravovat. Pokud je jich vybraných víc naráz, okno vlastností informace o entitách automaticky třídí a zobrazuje ty, které jsou pro vybrané entity shodné.

Filtry a Akční tlačítka

Součástí okna vlastností jsou nástroje na filtrování entit podle daných vlastností. Po výběru libovolné vlastnosti je možné zobrazit všechny další entity se shodnou vlastností.

Další součástí okna vlastností jsou Akční tlačítka. Zobrazují vždy všechny akce, které jsou dostupné pro aktuálně vybrané vlastnosti a jsou oddělené od seznamu vlastností.

Příkazový řádek

Příkazový řádek slouží k zadávání geometrie (souřadnice bodů) případně na zadávání dalších příkazů, jejichž seznam je uvedený v kompletním manuálu. Součástí panelu s příkazovým řádkem je také stavový řádek, který zobrazuje momentální akci, která probíhá na pozadí programu.

Pruh nabídek

Pruh nabídek je základným typem Nástrojového panelu. Obsahuje základní funkce, jejichž většina je jednotlivě přístupná přes specifické Nástrojové panely (ikony). Obsahuje několik položek, které se nenacházejí na žádném jiném panelu – např. nastavení a práce s daným souborem (uložení, zavření, otevření).

Nástrojové panely

Nástrojové panely obsahují jednotlivá tlačítka (ikony) s funkcemi programu. Jsou zatříděné do přednastavených skupin. Obsah jednotlivých ikon na panelech je možné libovolně měnit, tak jako i jejich polohu v celkovém pracovním prostředí programu.

Náhledové Okno

Na první pohled vypadá okno náhledu jako okno dokumentu. Ve skutečnosti se jedná o jeho zjednodušenou variantu. V tomto okně je možné zobrazit informace o požadovaných entitách, a to ve formě tabulek. Zobrazená data je možné v okně přímo editovat. Například je možné zobrazit v okně náhledu informace o průřezech nebo prutech a jejich zatížení.

Okno náhledu se zapíná a regeneruje akčními tlačítky umístěnými ve spodní části okna vlastností. Vždy, když položka Obnovit svítí červeně, je třeba náhled regenerovat, protože došlo patrně ke změně parametrů, které chceme zobrazit.

Založení nového projektu

Založení nového projektu v závislosti od nastavení nabídne program vždy po startu, případně ho vyvoláme v základním nástrojovém panelu: Soubor \rightarrow Nový, případně klávesovou zkratkou Ctrl+N.

Základní		▼ X
🗅 🖻 🔚	<u>⊳</u> ≘ ! ?	plachta_5_11_2008-ram 💌

Typ projektu

Všechny následující příklady a cvičení popisují jen projekty typu Konstrukce s výpočtem. Ostatní typy projektů mají svoje specifické určení a jejich popis je možné najít ve všeobecném manuálu.

vyberte novy projekt		
Nový projekt Uživatelské	šablony	
Konstrukce s LTA výpočtem	Scaffolder Konstrukce model IT bez výpočtu	
Prázdný projekt Scia Engi	neer.	
	OK Storno]

Data o projektu

Na začátku práce s novým projektem je vhodné (a v případě volby materiálu i nutné) nadefinovat některé obecné položky. Informace o jménu, autorovi nebo datu se automaticky převedou do záhlaví dokumentu nebo výkresu.

V kartě Funkcionalita pak zapínáme požadované přídavné funkce (nelinearity, klimatická zatížení, stability apod.). Je lepší přidávat funkcionality postupně a až v okamžiku, kdy je chceme použít.

	Data				Konstrukce :	
					Materiál :	_
- And	Jméno				Beton	
	×.,				Ocel	
	Cast	· .			Dřevo	
	Popis	-			Ostatní	
24.21	- C.	-			Hliník	
al ??	Autor	-				
100	Datum	12 11 200	18			
		1.000.00000				
-112						
((OL		14				
ULU Z	Uroveň proje	ektu :	Model :			
· EL / P	Rozšířená	•	Jeden	_		
	Dimenzační	noma :				
116		EC.E	N			
L. We		1.00 ° C				
a state						

Prutové konstrukce

Příklad – Rámová konstrukce

Cílem příkladu je ukázat vícero možností zadaní jednoduchého betonového 2D rámu krok za krokem.

Založení nového projektu

Založení nového projektu je vysvětlené v předcházející kapitole "Založení nového projektu".

22	- Data		Konstrukce :	
			Rám XYZ	
			Materiál :	
一步人自	Jméno	Priklad_2D-1-Ramová_konstrukcia	Beton	
	C and		Materiál	C25/30 💌
	Casi	r I	Ocel	
	Popis	-	Dřevo	
28.01	A. 4	-	Ostatní	
STER	Autor	JZAL	Hlinik	
and the	Datum	13. 11. 2008		
81 J				
10°E				
ALCOL.				
ALL HV	Úroveň proje	ektu : Model :		
1	Rozšířená	Jeden .	•	
100 100	Dimenzační	noma :		
14		EC EN		
Tatt		EC-EN		

Zadaní průřezů

Zadávaní průřezů vyvoláme poklepáním na ikonu na Nástrojovém panelu [™]. V případě jiného rozložení nástrojových panelů zadávaní průřezů najdeme v základním pruhu nabídek Knihovny → Průřezy. Zadáme betonové 2 obdélníkové průřezy s rozměry 400 x 200 mm a 500 x 350 mm.

V servisu Konstrukce zvolíme možnost ze skupiny "Prutový prvek".

Ve vlastnostech sloupu změníme jen předdefinovanou hodnotu výšky na 7m, použijeme průřez s rozměry 500 x 350 mm.

E Sloup			X
	Jméno	B1	
ez	Тур	sloup (100)	-
	Výpočtový model	Standard	•
ey	Průřez	CS2 - RECT (500; 350)	▼
	Alfa [deg]	0,00	
	Systémová osa prvku	střed	▼
	ey [mm]	0	
	ez [mm]	0	
	LSS	standard	<u>-</u>
	Pootočení LSS [deg]	0,00	
	FEM typ	standard	<u>-</u>
	Vzpěmé a relativní délky	Výchozí	
	Vrstva	Vrstva 1	▼
	Geometrie		
Z	Délka [m]	7,000	
	Bod vložení	spodní	<u>-</u>
Σ́Υ			
	L		
			OK Storno
		-	

Umístnění sloupu

Sloup do projektu můžeme umístit kliknutím myší nebo zadáním bodu vložení pomocí příkazového řádku (mezi souřadnicemi píšeme středník nebo mezeru). Počáteční bod sloup umístíme počátkou souřadného systému, tedy do souřadnice [0;0;0].

Po vložení prvého sloupu zadávání konstrukce pokračuje dál. Ten samý sloup hned v dalším kroku vložíme také na souřadnici [6;0;0]. Jsme v editačním režimu (konstrukce modrou barvou na kurzoru) a podobně bychom mohli pokračovat v zadávání libovolného počtu stejných entit.

Po zadání druhého sloupu ukončíme zadávaní dvakrát klávesou ESC.

Zadaní nosníku

Nosníky zadáme přímo kreslením myší. Nejprve upravíme nastavení úchopových bodů. Nastavení vyvoláme klepnutím na ikonu "Úchop" v pravé dolní časti programu.

V nastaveních uchopovacího režimu zaškrtneme možnosti úchytu na koncové body a polovinu rozpětí.

V servisu Konstrukce zvolíme možnost ze skupiny "Prutový prvek" → Nosník.

Průřez nosníku je 400 mm x 200 mm a délka 6 m.

	Jméno	B3	
	Тур	nosník (80)	×
\land	Výpočtový model	Standard	•
α	Prúřez	CS1 - RECT (400; 200)	·
	Alfa [deg]	0,00	
	Systémová osa prvku	střed	
2' (i)	ey [mm]	0	
	ez [mm]	0	
	LSS	standard	×
	Pootočení LSS [deg]	0,00	
lez	FEM typ	standard	-
\times (i) \sim	Vzpěrné a relativní délky	Výchozí	
ey 💛	Vrstva	Vrstva 1	▼
	Geometrie	a second a	
Z	Směr	osa X	-
	Délka [m]	6,000	
	Bod vložení	začátek	Υ
XY			

Nosník zadáme kliknutím na počáteční body a zadávání ukončíme klávesou ESC.

	Midpoint			
-	and and a second			
٢	4			
1	È⇒x ∣			

Klouby

V servisu Konstrukce zvolíme Výpočtová data \rightarrow Klouby na prutu. Ve vlastnostech kloubu zvolíme volné pootočení fiy a pozici kloubu na oba konce nosníku.

	Jméno	H3	
	Pozice	Oba	
	UX	Tuhý	
AUZ	uz	Tuhý	2
(i)	fiy	Volný	

52

Podpory

Ukončením fáze zadávání geometrie je zadání podpor. V servisu Konstrukce se nachází položka Výpočtová data \rightarrow Podpora \rightarrow Podpora v uzlu.

Typické předdefinované typy podpor však můžeme zadat přímo z příkazového řádku.

	ØØ	U 🛓 🕍 🛱 🛱 🌭		
۰ III ا	Příkazo	ová řádka		
Novú Zavřít	▶ .	&		
<u>•</u>	Příka	z >		
		m Rovina XZ Př	îpraven	
Podpora v uzlu				X
		Jméno	Sn3	
		Тур	Standard	•
		Úhel [deg]		
		X	Tuhý	<u> </u>
		Z	Tuhý	
		Ry	Tuhý	<u>•</u>
		Standardní velikost [m]	0,200	
AZ /	E	Geometrie		
Y P		Systém	GSS	
i				
				OK Storno

Uzly, na které chceme zadat podpory, vybereme v jednom kroku. Výběrový obdélník můžeme vést zprava doleva (vybrané budou i entity, které protínají tento obdélník) anebo zleva doprava (vybrané budou jen entity ležící uvnitř výběrového obdélníka) za současného držení levého tlačítka myši.

\bigcirc	 	 	 \bigcirc
\frown			\frown
		i.	\bigcirc
N			

Kontrola geometrických dat

Po zadání geometrie je doporučené vždy spustit kontrolu geometrických dat. Ta kontroluje zda je správně zadaná geometrie výpočtového modelu, např. kontroluje přítomnost zdvojených uzlů, prutů nulové délky apod.

Kontrola se spouští z hlavního stromu:

íontrola geometrických dat	X
Kontrola uzlů Vyhledání uzlů	
Vyhledání zdvojených uzlů	🗌 Ignorovat parametry
_ Kontrola prvků	
✓ Kontrola prvků Vyhledání nulových prvků	Pruty nulové délky: 0 ✓ Vymazání ''nulových'' prutů
Vyhledání zdvojených prutů	Zdvojené prvky : 0 ☑ Vymazání zdvojených dílců
	Chybné části: 0 ☑ Vymazat chybné části
Kontrola přídavných dat Kontrolovat polohu přídavných dat	Chybná pozice 0 V Správná pozice
Kontrola ocelových přípojů Kontrola ocelových přípojů	Chybné přípoje 0 ✓ Vymazat chybné přípoje
Kontrola přídavných dat Zkontrolovat dupli	citu jmen Spustit Storno

Propojit prvky / uzly

Kliknutím na ikonu ad příkazovým řádkem zobrazíme popisy uzlů, popisy prutů zobrazíme pomocí ikony

Jakmile vybereme jeden ze sloupů, např. B1, v okně jeho vlastností vidíme, že je tvořený uzly N1 a N2. Sloup "neví" o uzlu N5 a tím pádem ani není propojený s nosníkem B3.

Funkce Propojit prvky / uzly automaticky generuje uzly v dotycích prvků. Tyto uzly nejsou klasické konstrukční uzly, ale jsou nazvané Připojené uzly a v jejich vlastnostech je kromě vypsání prvků, které spojují, i akční tlačítko, které umožňuje daný uzel opět odpojit.

	Vyrovnat kontrukční prvky do rovin (posunout uzly)	
	Zarovnat	
E	Geometrické tolerance	
	Min, vzdálenost dvou uzlů, uzlu od křivky [m]	0,001
ANT	Max. vzdálenost uzlu od roviny 2D prvku [m]	0,000
Intersection ES3 / Inter3	Propojit (generovat připojené uzly, průniky, vnitřní uzly atd.)	
	Phpoj	\boxtimes
	Kontrola geometrických dat	l.
	Zkontrolovat (sloučit dvojité uzly, smazat porušené entity)	

Nastavení zobrazení konstrukce v 3D okně

Nastavení pohledu

V pravém dolním rohu grafického 3D okna se nachází 2 posuvníky, pomocí kterých je možné konstrukci natáčet.

Zoom, t.j. zmenšování a zvětšování pohledu se uskutečňuje prostředním kolečkem na myši.

Nejběžnějším způsobem natáčení grafické scény je pohyb myší za současného držení klávesy CTRL a pravého tlačítka myši. Všimněte si, že scéna s objektem je vždy otáčená okolo vybraných elementů, které tvoří střed otáčení. Podobně můžeme posouvat modelem držením kolečka myši nebo klávesou SHIFT a pravým tlačítkem myši.

Na nástrojové paletě jsou přístupná rychlá nastavení pohledu podle globálního souřadného systému:

spolu s nastaveními přiblížení konstrukce :

 $\mathbf{A} = \mathbf{A} = \mathbf{A} = \mathbf{A}$

Nastavení Parametrů zobrazení

Jednou z nejjednodušších cest jak nastavit parametry zobrazovaných entit je kliknout pravým tlačítkem na libovolné místo pracovní plochy a z nabídnutého kontextového menu vybrat možnost "Parametry zobrazení pro všechny entity".

V případě aktivního výběru je možnost rozšířená o možnost nastavení parametrů zobrazení jen pro vybrané entity.

Parametry zobrazení					
۱ 🗆	/ybrat / Zrušit skupinu	Uzamknout polohu 🛛 🗌			
🕅 Modelování/Kreslení 📔 🌌 Různé 📔 🔍 Pohled 🕾 Konstrukce 📄 🖭 Popisy 🛛 🖾 Model 🛛 🛃 Zatížení / hmoty					
\square	🔽 Označit / Zrušit vše				
	Servis				
	Zobrazit při vstupu do servisu	v			
	Konstrukce				
	Styl + barva	normál 🗾 🚽			
	Kreslit systémovou čáru dílce	v			
	Styl systémové čáry dílce	systémová čára 📃 🚽			
	Typ modelu	výpočtový model 📃			
	Zobrazit oba modely				
	Povrch prvku				
	Rendering	rendrovaný s hranami 🛛 💌			
	Panel				
	Povrch prvku				
	Rendering	průhledný 🗾			
	Uzly konstrukce				
	Zobrazit	>			
	Styl značky	Tečka 🗾			
	Lokální osy				
	Uzly				
	Plošné dílce				
	ОК	Storno			

Obsah dialogu s parametry zobrazení závisí na zvolené funkcionalitě projektu a na jeho aktuálním obsahu (beton, výztuž, ocel, přípoje atd.). Základní záložky pro nastavení parametrů zobrazení jako Konstrukce a Popisy jsou přístupné vždy.

Některé typické a často používané parametry je možné najít i na jiném místě než je kompletní dialog. Je možné je najít nad příkazovým řádkem na hraně aktuálního 3D okna:

Zadání výpočtových dat

Zatěžovací stavy a skupiny

Každé zatížení se musí nacházet v zatěžovacím stavu, přičemž zatěžovací stav může obsahovat různé typy zatížení. Každý zatěžovací stav má svoje vlastnosti, které jsou použité při generovaní kombinací zatížení – může to byť např. zatížení stálé anebo nahodilé apod.

Každý nahodilý zatěžovací stav se nachází ve skupině zatěžovacích stavů. Skupina obsahuje informace o kategorii (obytné budovy, kanceláře, vítr, sníh...) a jejich vzájemné působení (standard, výběrová, společně). Ve výběrové skupině se zatěžovací stavy patřící do této skupiny nemohou společně vyskytovat v kombinaci.

V tomto ukázkovém příkladu nadefinujeme 2 zatěžovací stavy:

- LC2 : Stále
- LC3 : Nahodilé

Zatěžovací stavy vytvoříme v dialogu "Zat. stavy", první zatěžovací stav LC1 je vlastní váha konstrukce a je generovaný automaticky.

Zatěžovací stavy			2
🏓 🤮 🗶 😫	🕛 🕰 🖉 🎒 🎏 🖬 🛛 Všechny	• 7	
LCI	Jméno	LC3	
LC2 - podlaha	Popis	uzitne	
	Typ působení	Nahodilé	•
Les dane	Skupina zatížení	LG2 🗸	
	Typ zatížení	Statické	•
	Specifikace	Standard	•
	Působení	Krátkodobé	•
	Řídicí zat. stav	Žádný	•
Nový Možit Opravit Smazat Zavřít			

Zatížení

Po zadání zatěžovacích stavů se objeví nová položka v hlavním stromě "Zatížení". Po vstupu do tohoto servisu je možné zadávat zatížení pod jednotlivé zatěžovací stavy.

Zatížení 🛛 🖓	×
I C3 - uzitne	
LC1 LC2 - podlaha	
LC3 - uzitne	- 11
na prutu	
🛛 🛄 Spojité zatížení - na prutu	- 11
🚽 🚟 Teplotou - na prutu	
📄 🖻 – 🔰 Moment	
🚽 🚽 🚽 🚽 🚽	
- 555 Spojitý moment na prutu	
🚽 🕈 Posun bodu - Posun podpory	
📕 Generátor rovinného zatížení	
Akumulace vody	

Vybereme zatěžovací stav LC2. Následně zvolíme zadání Bodové sily na prutu. Zadáme následující parametry a vybereme jednotlivé nosníky:

Následně v horní části servisu Zatížení přepneme aktuální zatěžovací stav na LC3 a v tomto zatěžovacím stavu opět zadáme konstantní zatížení na prut o velikosti 15 kN/m.

Zatížení zadáme jen na spodní nosník, abychom si ukázali možnosti kopírování zatížení.

Po vybrání zadaného zatížení vyvoláme kontextové menu stlačením pravého tlačítka na myši:

Zvolíme možnost kopírovaní přídavného data LF1 a vybereme horní nosník rámu:

Tak jako i v případě zadávání dat o modelu v servisu Konstrukce, i v servisu Zatížení je aktivovat nejběžnější používané typy zatížení zjednodušeným způsobem – ikony na tyto typy zatížení se nacházejí přímo nad příkazovým řádkem:

Kombinace

Zatěžovací stavy definované v projektu mohou být kombinované v kombinacích zatěžovacích stavů. Kombinace následně mohou být použité na vyhodnocování výsledků a dimenzování a posuzování podle národních norem.

Kombinace mohou byt různých typů. V programu SCIA Engineer je možné použít 3 základné typy kombinací: Lineární, Obálkové a Normově závislé.

Správce kombinací je možné otevřít položkou v hlavním stromě:

Kombinace				<u> </u>		
🚺 🕃 🖉 🖬 🔛 🕰 🎒 Zad	ané kombinace		*			
	(v 1+ v					X
	Kombinace - C	-01				
		nece			ižovací stav ižovací stav .C1 - Vlastní tíha .C2 - Stálé zatíže .C3 - Nahodilé II .C3 - Nahodilé II .C5 - Nahodilé II .C6 - Vítr .C7 - Sníh	ní L
	Název :	C01		1.1	Smazat	Přidat
Nový Vožit Opravit Smazat	Souč. :	0hálka úraana	Opravit		Smazat vše	Přidat vše
		Ubaika - unosno:	a 🔟	Přerozdělení	ohybových momer	itů 🗖
	Popis :	1		Zdrojová	žádný	*
	Nelineámí kombinace :		¥		OK	Storno

Podrobněji se problematice kombinací věnuje tutoriál Kombinace zatěžovacích stavů.

Výpočet

Lineární výpočet

V tomto okamžiku jsou v projektu zadané všechny nutné předpoklady na to, aby úspěšně proběhl lineární výpočet.

Výpočet je možné spustit ikonou v hlavním stromě:

Po skončení výpočtu řešič ohlásí základní informace o ukončeném výpočtu:

Výsledky

Vyhodnocování výsledků

Po skončení výpočtu je ve stromě přístupná další položka – Výsledky. Všechny výsledky jakéhokoliv druhu výpočtu se nacházejí v tomto servisu.

Ovládání výsledků se drží jednotného principu. Po zvolení vyšetřované položky ve stromě má tato položka svoje vlastnosti.

Pro vnitřní síly vlastnosti mohou vypadat následovně:

Vlastnosti	×
Internal forces on member (1)	• Va V/
Jméno	Internal forces on member
Výběr	Vše 💌
Typ zatížení	Kombinace 🔹
Kombinace	C01 💌
Filtr	Ne
Konstrukce	Počáteční 🔹
Hodnoty	My
Extrém	Globální 🔹
Nastavení kreslení	
Řez	Vše 💌
Aluse	
Akce	
Obnovit	>>>
Detaini	>>>
Nahled	>>>

Akční tlačítka v dolní časti dialogu:

Obnovit – při každé změně vlastností vyhodnocované veličiny je nutné použít manuální obnovení překreslení výsledků.

Detailní – umožňuje detailní analýzu výsledků na specifickém prvku.

Náhled – Otevírá samostatné okno a náhledem dokumentu, ve kterém je zobrazená tabulka se zvoleným typem výsledků.

Dokument

Nedílnou součástí projektu je pochopitelně i dokument, přehledně shrnující veškerá data o konstrukci, výpočtových datech, zatížení, výsledky i názorné obrázky. Do dokumentu se přepneme buď z hlavního stromu nebo odpovídající ikonou.

V dokumentu můžeme přidávat jednotlivé kapitoly podle libosti a podobně jako v náhledovém okně upravovat parametry jednotlivých tabulek. "Chytrý dokument" umožňuje aktualizaci dat v tabulkách a obrázcích podle uskutečněných změn v konstrukci, zatížení aj. Stejně tak můžeme opravit některé hodnoty přímo z dokumentu tak, že se nám tyto změny promítnou i do konstrukce.

Hotový dokument můžeme vytisknout, uložit jako soubor rtf nebo exportovat do pdf.